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Abstract. We use a novel, forced censoring technique that closer fits the lower tails
of strength distributions to better estimate extremely smaller percentiles for
measuring progress in continuous improvement initiatives. These percentiles are of
greater interest for companies, government oversight organizations, and consumers
concerned with safety and preventing accidents for many products in general, but
specifically for medium density fiberboard (MDF). The international industrial
standard for MDF for measuring highest quality is internal bond (IB, also called
tensile strength) and its smaller percentiles are crucial, especially the first percentile
and lower ones. We induce censoring at a value just above the median to weight
lower observations more. Using this approach, we have better fits in the lower tails of
the distribution, where these smaller percentiles are impacted most. Finally, bootstrap
estimates of the small percentiles are used to demonstrate improved intervals by our
forced censoring approach and the fitted model. There was evidence from the study
to suggest that MDF has potentially different failure modes for early failures. Overall,
our approach is parsimonious and is suitable for real time manufacturing settings.
The approach works for either strengths distributions or lifetime distributions.

Key Words : first percentile, lower percentiles, forced censoring for fitting better,
strengths of materials, internal bond, tensile strength, probability plots.

1. INTRODUCTION

Medium Density Fiberboard (MDF) is a superior engineered wood product with high
reliability and grooving ability for unique designs. MDF provides greater qualities on
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consistency of finish and density, plus freedom from knots and natural irregularities
compared to regular wood products. There are many examples of MDF being used in
furniture, cabinets, shelving, flooring, molding, etc. Reliability of such products is
important to all concerned.

Product “life” for MDF can be measured in terms of the strength to failure, as
opposed to the time to failure. The strength or pounds per square inches to failure is a
crucial reliability parameter of the product. It naturally allows the producer to make
assurances to customers about the safe, useful “life” range of the product. One key
measure of the quality or reliability is MDF’s internal bond (IB), also called tensile
strength, which is measured in pounds per square inch (or equivalent metric units) in
destructive tests on sampled MDF until breakdown. Compare Young and Guess (2002)
for how such data is stored and used in a real time data base with regression modeling to
predict strength. See Guess, Walker, and Gallant (1992), Guess and Proschan (1988), and
Guess, Hollander and Proschan (1986) for other measures of reliability than percentiles.

The lower percentiles are particularly of great interest and importance for companies,
government oversight organizations, and consumers in specifying the product reliability of
MDF. Some legal issues require careful monitoring and estimation of these lower
percentiles in strengths of various products, e.g., MDF. Compare Kim and Kuo (2003),
Kuo, Chien, Kim (1998), and Kuo, Prasad, Tillman, and Hwang (2000) for more on
percentiles. Also, see Walker and Guess (2003) for strengths of container bottles using
Kaplan and Meier graphs and nonparametric approaches. Guess, Edwards, Pickrell and
Young (2003) view graphically and exploratorially this type of data, but did not provide
confidence intervals for percentiles there. We compute in this paper such confidence
intervals for lower percentiles, via parametric modeling and bootstrapping through a novel
approach to fit the lower distributions better. New results on different IB data are
presented, regarding these statistical distributions.

There is evidence from the study to suggest that MDF has potentially different failure
modes for early failures. Probability plots show that naturally expected failure
distributions, like the Weibull, do not fit the raw data satisfactorily overall. Even the
distribution of overall best fit, such as the normal, provides poor estimates of the smaller
percentiles. We induce censoring to weight lower observations more. All the
observations no larger than the median are retained intact as exact failures, while
observations beyond the median are censored at a forced value slightly larger than the
median, but less than the next true observed failure above the median.

After applying the censoring technique, we have better goodness of fit in the lower
tails, where the smaller percentiles are impacted the most. It shows that the Weibull
distribution fits the lower, shorter-lasting MDF’s better, while the overall strength is fitted
by the normal distribution better. Recall Weibull’s theory as a weakest link model for
early failures; while, for overall failures, normality via the Central Limit Theorem (CLT)
is more appropriate. The CLT normality comes by the total overall strength being
typically the sum of many individual fiber strengths. Finally, bootstrap estimates of the
small percentiles are used to support using the forced censoring technique by how it
improves the fitted model’s percentile confidence intervals. We use both percentile
bootstraps and t bootstrap intervals.
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Our approach can be used for many other applications beside strengths of materials
and their lower percentiles. The forced censoring technique can be employed successfully
for warranty or lifetime data analysis when estimates of new warranties are based on
smaller percentiles. It could also be used in the study of time to submission for rebates or
of times to return a product in marketing analysis.

Overall, our approach is parsimonious and is suitable for real time manufacturing
settings. Also, it does not depend on the underlying distribution being Weibull, lognormal,
or otherwise. The forced median censoring technique improves the data quality for lower
percentile estimates. Probability plots help assess which underlying parametric model fits
the best. The bootstrapping method adds further evidence to support this approach, as
well as validating the confidence interval estimates.

We investigate the most important MDF product type, defined as “Type 1”. The
specifications of Typ: 1 are a density of 46 pounds per cubic foot (Ibs/ft’), thickness of
0.625 inches, and width of 61 inches. The dataset had 396 destructive tests till failure.
Lower percentile confidence intervals are computed using normal-approximation
maximum likelihood (ML) and bootstrap methods. More detailed references on these
types of confidence intervals can be found in Meeker and Escobar (1998) with bootstrap
intervals discussed by Davison and Hinkley (1997), Chernick (1999), Efron and
Tibshirani (1993), and Efron (2003).

Section 2 analyzes the primary Type 1 product for the complete data and forced
censoring at the median. Section 3 presents bootstrap results including the confidence
intervals for various parametric models for both the complete and the forced censoring
cases. The statistical software S+ (http://www.insightful.com/products/default.asp) and a
free add-on called Splida (http://www.public.iastate.edu/~splida/) are used throughout our
paper, with some Matlab (http://www.mathworks.com/). Concluding remarks are in
Section 4.

2. ANALYZING FORCED CENSORING DATA OF TYPE 1 PRODUCT TO
FIT THE LOWER TAILS BETTER

The complete data set of 396 failures for the Type 1 product is initially fitted to
several popular distributions of lifetime data. The qualities of the model fits are examined
graphically on the respective probability plot in Figure 1. It is highly recommended by the
authors to implement this exploratory step before making any further statistical inferences.
By plotting the data, we can quickly identify underlying issues and proceed with the most
appropriate strategies including median censoring. Recall that IB is measured here in
pounds per square inches (psi).

Figure 1 displays that observed early failures deviated from the straight lines of
parametric ML estimates. There are a few data points on the lower tail and mostly the
upper tail that were not well captured by any of the distribution models, evidenced by both
tails stretching outside the coverage of pointwise 95% confidence interval of ML
estimated models. Later, it is important for quality goals that need both a specification
number and pointwise confidence interval on the reliability. We notice that the amount of
sampling variability at the extreme observations can be rather large, as suggested by the
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simultaneous confidence bands in Figure 2. See, for example, Section 3.8 of Meeker and
Escobar (1998) for more details.
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Figure 1. Complete Data Probability Plots with ML Estimates

It is indicated in Figures 1 and 2 that the ML estimated normal distribution model
seems to be the best fit to the whole bulk of data, and that some curvature change exists no
matter which model is fitted. The existence of such behavior in the data might be signs of
potential different failure modes or mixture of subpopulations at the extremes or of
outliers during the breakdown or measurement process (section 6.6, Meeker and Escobar,
1998). In these cases, a certain model, for example the normal distribution, may fit the
majority of the data better than the other, but this is merely achieved by compromising the
local approximation of failure modes toward extreme values, lower or upper. Or, the
shape of an empirical failure model, such as Weibull, happens to be largely determined by
the upper part of data, while the desired lower percentiles deviate from the observed data
which are less influential.
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Figure 2. Normal Probability Plot for the Complete Data and Simultaneous Approximate
95% Confidence Bands

We will further present quantitative results in Section 3 that the first percentile (and
lower percentiles) estimates using the complete data naively were generally unreliable,
either too optimistic or overly conservative. This may lead to higher costs of
manufacturing when product reliability is misjudged. With the existing data set that has
included sufficient information for the small percentile estimates, it is a cost-efficient and
statistically sound solution to reengineer and cleanse the data of potential outliers and
reassess the pragmatic information quality for the lower percentiles. See English (1999),
Huang, Lee, and Wang (1999), or Redman (2001).

Because the goodness of global model fit sacrifices the more important lower
percentile estimates, we use a forced median-censoring technique to increase the model
dependence on the lower tail information. Essentially, such a technique reengineers the
data set so that the upper half of the complete data set are regarded as being censored at a
forced value slightly larger than the median but less than the next true observed failure
time. Hereby, these large observations are not as informative as the smaller observations
in that their breakdown strengths are only known to be larger than the median. In other
words, more weights are put on the observations of smaller values in fitting a model.

For the failure data of Type 1 product, we retain 198 observations on the lower tail
while censoring the upper half of data (198 observations). This weighted data is fitted by
selected models in Figure 3.
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Figure 3. Probability Plots of Median Censored Data with ML Estimates

Upon censoring the upper half of the data, the fitted ML estimated lines of the
Weibull and Smallest Extreme Value distributions (Figure 3) are able to capture the
pattern of small extreme values more “closely” and more importantly, the data on the
lower tail, than other models. The lowest data, which would be considered incorrectly as
outliers if it were without median censoring (compare both Figures 1 and 2), now falls
completely within the 95% confidence interval of a Weibull or S.E.V. model. For
additional specific numbers, say 90 psi or a previous first percentile, for example, with
improved, continuous quality goals, we really want and prefer to have pointwise
confidence intervals for their new, improved reliability to report to management. When
the interval fails to enclose the observed data, however, it is an appropriate conclusion that
the data is not as consistent with the model hypothesis (Section 7.3.2, Meeker and Escobar,
1998). Thus, we suspect different underlying failure modes over the whole range of
observed failures. The early failures are similar to the “infant mortality” for many
manufacturing settings. Recall Weibull’s weakest link model for the catastrophic effect of
even a very small external force upon a certain portion of inferior products, here mostly
the lower percentiles. However, the breakdown of the majority of MDF products is
determined by a combined strength of individual fibers and bonding between the fibers,
where the Central Limit Theorem is more suitable.
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Table 1 presents the loglikelihood and AIC scores of select models as the quantitative
evidence for a different early failure mode than the normal model, which fits the complete
data the best. The Akaike’s Information Criterion (AIC) for model selection (Akaike,
1973) favors the model that minimizes AIC score based on the same information (median
censoring or not). Therefore, the Weibull ML fit, also seen in Figure 4, is the best
approximating model to the censored data set.

Table 1. Select Model Scores for the Complete and Censored Data

With median censoring W/O median
ML fit censoring
Log AIC Log AIC
likelihood Likelihood
Weibull -868.8 1741.6 -1518 3040
SEV.* -869.4 1742.8 -1527 3058
normal -871.5 1747 -1469 2942

* We use S.E.V. to denote the Smallest Extreme Value model where applicable in

Fraction Failing

this paper.
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Figure 4. Median Censored Data on the Weibull Probability Plot
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Figure 5 shows on the Weibull probability plot how the first percentile estimates are
obtained from all three models in Table 1. The solid straight line and the corresponding
95% pointwise confidence bands show the Weibull ML fit, while the curve of normal ML
fit deviates the most severely from the lower tail of observed failures. The difference
between the Weibull and S.E.V. model on the first percentile is trivial. The S.E.V. model
may be of interest if a conservative estimate is preferred in the practical context of
reliability evaluation. It is noticeable that the S.E.V tends to produce overly
underestimated results as the percentage (quantile) of interest becomes smaller than 1%
(0.01).
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Figure 5. Estimating the First Percentiles from Select Models

Table 2. The First Percentile Normal-approximation Estimates of Select Models for
' the Censored Data

ML fit p Pencentile Std_Err_ 95%_Lower 95%_Upper
Weibull 0.01 94.746 1.47018 91.908 97.672
S.E.V. 0.01 93.255 1.75203 89.821 96.689

Normal 0.01 97.262 1.16150 94.986 99.539
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Splida also computes the asymptotic normal-approximation confidence intervals
while generating the “probability plot with parametric ML fit”, which is a macro in the
Splida menu. Table 2 presents the 95% confidence intervals generated based on the
Weibull, S.E.V., and normal ML fits. The S.E.V. model gives the most conservative
estimate, while the normal model is too optimistic because the data is unduly fitted. See
Section 7.3.3 and 8.4 of Meeker and Escobar (1998) for more details on the normal
assumption of log-percentile in this estimation method. Meeker and Escobar (1998)
comment, “with moderate-to-large samples (the normal approximation) are useful for
preliminary confidence intervals” and “quick, useful, and adequate for exploratory work”.
Other alternatives of estimating confidence intervals, including a simple nonparametric
estimation and various bootstrap methods, are discussed in the next section of this paper.
We report more and final results of the first percentile confidence intervals in Table 3 of
Section 3.

3. USING BOOTSTRAP CONFIDENCE INTERVALS TO
DEMONSTRATE IMPROVEMENTS IN INTERVALS BY THE FORCED
CENSORING TECHNIQUE

The novel technique of forced median censoring has shown its capability in helping
detect possibly different failure modes and improving the model fit, as well as percentile
estimates on the lower tail. However, there are some potential weaknesses, both theoretic
and practical, in the approach thus far. Figure 2 has suggested that the sampling
variability at the extremes can be rather large so that the ML fit plots may give the false
impression in model comparisons (Section 6.4.1 Meeker and Escobar, 1998). The
entropic information model selection criterion such as AIC affirms our conclusions drawn
from probability plotting; yet, the normal-approximation confidence interval still has its
theoretic shortcomings, for example, the normal assumption of transformed data may not
be the case especially when the sample size is not large. In this section, we rely on the
bootstrap method to further demonstrate the information quality improvements from
applying the forced median censoring technique, and will provide more accurate
confidence intervals, in support of a practitioner’s work and presentation to higher
management. Table 3 presents the 95% confidence intervals of the first percentile for
both complete and median censored data, using the approximate and bootstrap method,
both nonparametric and parametric. We will explain more below.

The main idea of the bootstrap method is to simulate the repeated sampling process,
reduce the sampling variations in the data, and compute intervals from the simulated
distribution of needed statistics without having to making any assumptions on the
sampling distribution. The following are three standard steps: 1.) generate a resampled
data set, called bootstrap sample, repeatedly for a large number of times, 2.) compute the
desired statistic for each bootstrap sample, and 3.) extract information from the
distribution of the statistics obtained in 2.), which is the simulated sampling distribution of
the population statistic.

For step 1.), the resampling method can be either parametric or nonparametric. See
Section 9.2.2 of Meeker and Escobar (1998). We choose the nonparametric bootstrap
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sampling scheme for all of our bootstrap samples. There are B = 2000 bootstrap samples,
each consisting of 396 failures resampled with replacement from the actual data cases,
bound with their respective original censoring information where applied. For step 2.), the
statistic (first percentile here) for each bootstrap sample can be computed both
parametrically and nonparametrically, as the first column of Table 3 specifies
“nonparametric”, “Weibull”, etc.

To avoid confusion of terminology in step 1.), we stress again that all the resampling
schemes in this paper are assumed to be nonparametric. The term “nonparametric” we use,
for example in Table 3, specifically refers to the “totally nonparametric bootstrap method”
(compare Martinez and Martinez 2002 and their notation which we borrow here): not
only is the resampling scheme nonparametric in the “totally nonparametric method,” but
the population parameter @ (here the first percentile) is also calculated nonparametrically

as @ ; the same nonparametric computation of estimate of & repeats to each bootstrap

sample, producing the empirical bootstrap distribution of @, where 8 is the bth
bootstrap estimate. All the other confidence intervals in Table 3, which are not labeled
under the “nonparametric model assumption”, are obtained in the parametric way: a ML
estimated model is used to generalize the sample data and further statistical inference is
computed based on the model parameters. For other different general details on
asymptotic normality of percentiles, see Serfling (1980).

Under each model assumption, there are different confidence interval methods, noted
by “interval method” as the last column of Table 3, to construct a confidence interval for
the desired statistic, namely the first percentile. “Normal-approximation” refers to the
pointwise normal-approximation confidence intervals under the nonparametric model
assumption (Section 3.4.2, Meeker and Escobar, 1998), or to a log-percentile normal-
approximation confidence interval under respective parametric model assumptions
(Section 7.3.3, Meeker and Escobar, 1998). When using bootstrap method, one can select
either “bootstrap-t” or “bootstrap-percentile” method to compute the confidence intervals
from the simulated sampling distribution of bootstrap step 3.). If appropriately used, the
bootstrap-t confidence intervals can be expected to usually be more accurate than the
normal-approximation ones. The mathematical descriptions of these confidence intervals
can be found, for example, in Section 3.6, 7.3.3, and 9.3, respectively, of Meeker and
Escobar (1998), or compare Edwards, Guess, Young (2004). Splida has provided GUI
macros to compute all but the nonparametric bootstrap confidence intervals for the first
percentile. We wrote the MATLAB code to compute the bootstrap-t and bootstrap-
percentile confidence intervals under the nonparametric model assumption. Recall our
previous comments and references earlier in this section.

There is no significant difference in the nonparametric confidence intervals of first
percentile between the complete and median censored data, or bootstrap and non-bootstrap
method, because the nonparametric method only makes use of the data points local to the
first percentile. These nonparametric confidence intervals are much wider, however, than
the ones obtained under parametric model assumptions. Although these nonparametric
intervals can serve as fairly broad, robust comparisons for intervals obtained by other
methods, they do not allow for practical precision of more importance in the real world.
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Table 3. 95% Confidence Intervals of the First Percentile Computed Under Various
Model Assumptions and With/Without Median Censoring Technique

Model With median censoring W/O median censoring
assumption  95%_Lower95%_Upper95%_Lower95% Upper Interval Method
Nonparametric ~ 87.2 98.7 87.2 08.7 Normal-

Approximation
Nonparametric = 86.647 100.035 86.151 101.242 Bootstrap-t

Nonparametric ~ 87.200  100.630  87.200 100.676 Cootstrap-

Percentile
. Normal-
Weibull 91.908 97.672 87.969 91.601 Approximation
Weibull 91.834 97.392 88.085 97.164 Bootstrap-t
. Bootstrap-
Weibull 91.836 97.711 78.134 92.051 Percentile
Normal-
S.E.V. 89.821 96.689 81.305 86.346 Approximation
S.E.V. 89.878 96.358 80.456 94.572 Bootstrap-t
Bootstrap-
S.E.V. 89.808 96.347 64.647 87.956 Percentile
Normal-
Normal 94.986 99.539 95.402 99.147 Approximation
Normal 94.363  99.672 94552  99.607 Bootstrap-t
Bootstrap-
Normal 94.175 99.771 94.741 99.739 Percentile

Because the parametric model is built to best generalize a whole bulk of data and
extract information in terms of a few parameters, the computation of normal-
approximation confidence interval under a parametric model may come quick and
conditionally useful only at the cost of a local approximation, especially at the extremes.
Such an approach may be correct when the model fit is good globally over the data range;
however, when the globally good fit disagrees with the local data, the estimates become
very unreliable. In the case of Type 1 product, the complete data set includes outliers and
multiple failure modes. The normal-approximation confidence intervals from the Weibull
and S.E.V. ML fits tend to severely underestimate the lower tail, compared to the
generally more accurate bootstrap estimates (Meeker and Escobar, 1998). The gap
between the bootstrap and normal-approximation confidence intervals ranges from a few
to more than twenty pounds per square. Not surprisingly, due to the speculations of
overall physical breakdowns in section 2, the normal ML fit may seem to produce close
confidence intervals between the bootstrap and non-bootstrap results, by consistently
ignoring the smallest extreme values and fitting the majority. The consequence, therefore,
is that the normal ML fit tends towards overestimation the lowest percentile.
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Figure 6. The Histograms of a.) 1st, b.) 5th, ¢.) 10th, and d.) 25th Percentile
Nonparametric Estimates from Bootstrap Samples of the Complete Data for Type 1
Product

The bootstrap estimates are, to a certain extent, resistant to the influence of outliers,
but not unconditionally. Even though empirically better than the approximate method, the
bootstrap confidence intervals computed from the complete data might be as misleading in
the complete data case. During step 3 of the bootstrap procedures, a histogram of the
statistics from bootstrap samples can be drawn out as a simulation of the true sample
distribution of the statistic. Such bootstrap histograms can warn us of potentially false
structure in the complete data or reassure us in the censoring case of their likely usefulness.
Figure 6 from the complete data shows much more variations in the first percentile
nonparametric estimates of bootstrap samples, compared to the other percentiles, which
corresponds to Figure 2 normal plot and causes the estimates of lowest percentiles to be
difficult as discussed previously. Figure 7, also generated from the complete data, further
shows a strong sign of ambiguity lying in the estimation of first percentile from Weibull
ML fit of bootstrap samples. There are apparently two peaks in the histogram-simulated
distribution of bootstrap first percentile estimates, caused potentially by different failure
modes, or even possibly two different-shaped Weibull’s over different failure range, that
are previously speculated in this paper. Outliers in the data could be another reason that
affected the bootstrapping histograms. The bootstrap estimates reaffirm that a simple
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complete data ML fit is insufficient to capture the failure mode of Type 1 product and
produce reliable estimates of the lowest percentiles.
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Figure 7. The Histograms of First Percentile Weibull ML Estimates from Bootstrap
Samples of the Complete Data for Type 1 Product

As a comparison, the histograms of bootstrap estimate on the median censored data
in Figure 8 show no such bimodal patterns. Also, note carefully the scale is different in
Figure 8 for the normal to not be as spread out as the other previous Figures. If we look at
the computed confidence intervals from the median censored data in Table 3, all three
types of estimation methods, normal-approximation, bootstrap-t, and bootstrap-percentile,
produce very close results under the a simple model assumption. We slightly favor the
Weibull model because the S.E.V. has the tendency of underestimating the data, and
because Weibull model is further supported by the information model selection criterion.
On different occasions the choice between the Weibull and S.E.V. fit may depend on
whether a more accurate or conservative estimate is preferred.
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Figure 8. The Histogram of First Percentile Weibull ML Estimates from Bootstraps
Samples of the Median Censored Data for Type 1 Product

In presentations to higher management, it is reassuring to have different methods of
confidence interval estimation agreeing so closely. Though we generally trust the
bootstrap-t estimates more, the ML fit normal estimates are close to them because of the
improvement in data quality by the median censoring technique. From a practitioner’s
point of view, even if a bootstrap-t macro or a computationally-intensive environment is
unavailable, the conventional ML fit approach can still be acceptable as long as the
median censoring technique has been applied. Such a conclusion also helps the tasks that
demand online feedback or timely solutions.

The bootstrap method supports the methodology of the median censoring technique:
the data is reengineered by different weights so that a simple model can fit the observed
data very well; moreover, higher quality information of the lower percentiles are protected
from the influence of overall failure complexity as well as upper outliers in the complete
data.

4. SUMMARY AND CLOSING REMARKS

The observed complexity within the complete data set of Type 1 MDF product
failures causes great difficulties with estimating the lower percentile. The nonparametric
methods poorly manage the benefits of available information. However, simply fitting a
parametric model to the primitive, complete data is also problematic for its inadequacy in
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weighting the most crucial information. The resulting estimates of either approach are not
as precise and may lead to higher costs for poor product information or product reliability.

Rather than building a complicated model to match every portion of the observed
data, or being misled to unnecessarily collect more data at even higher cost, we introduce
a new technique of median censoring which places more weight to only the lower tail data
where it is critical for the smallest percentile estimates. It has been shown both
graphically and quantitatively that after the data quality is improved, a simple as well as
empirical failure model, Weibull, fits the lower tail exceptionally well and produces
consistently reliable estimates of the small percentiles.

Probability plots and ML fits are very supportive of the median censoring technique.
What is additionally crucial is the confirmation provided by bootstrapping. We have
shown that not only is the median censoring technique supported, but empowered by the
bootstrap method. T).e bootstrap simulated sampling distribution reveals different failure
modes existing in the complete data set, and that the median censoring technique resolves
the bimodality difficulty in the ML fit. The high degree of agreement between the
normal-approximation C.I. and the bootstrapped C.L is strong evidence that the median
censoring technique is superior.

Finally, we caution practitioners that as straightforward as the practice seems to be by
fitting a commonly known or accepted model to the raw lifetime data, it is dangerous and
costly to draw any immediate or convenient inference merely from that type of
preliminary analysis. We suggest that the data structure be examined via various
probability plots first. If these plots suggest deviations from the ML fit or possible
outliers or curvatures, it is advised to apply the forced median censoring technique to put
more weights on the part of data of best interest. Then, refit a parametric model for better
estimates of small percentiles. It is important that the bootstrap method be used to
validate the model and improve the estimates. Under limited situations, the model fitting
methods without bootstrapping may perform just fine and render quick and satisfactory
results because of the critically improved data quality by the median censoring technique.
Overall, our approach to analyzing complex real-world lifetime data is empirically
successful in its applications. This approach is also applicable to lifetime data, and for
smaller sample sizes that industries sometimes encounter when starting up new mills and
developing new products.
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