DOI QR코드

DOI QR Code

Energy Dissipation Capacity of the T-stub Fastened by SMA bars

SMA 강봉으로 체결된 T-stub의 에너지소산능력

  • Yang, Jae Guen (Department of Architectural Engineering, Inha University) ;
  • Baek, Min Chang (Department of Architectural Engineering, Inha University) ;
  • Lee, Jae Yun (Department of Architectural Engineering, Inha University) ;
  • Lee, Hyung Dong (Department of Architectural Engineering, Inha University)
  • Received : 2013.01.28
  • Accepted : 2014.06.03
  • Published : 2014.06.27

Abstract

The T-stub subjected to an axial tensile force shows various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of the T-stub, and the material properties of the T-stub and fastener. Due to the influence of these changes, the T-stub shows three failure modes: plastic failure after the flexural yielding of the T-stub flange, flexural yielding of the T-stub fillet, and fracture of the fastener. In general, a T-stub with a thin flange and where the gauge distance of the fastener is long has a larger energy dissipation capacity than a T-stub with a thick flange and where the gauge distance of the fastener is short, due to the plastic deformation after flexural yielding. In this study, three-dimensional nonlinear finite element analysis was carried out to determine the effect of the fastener used for fastening the T-stub on the energy dissipation capacity of the T-stub. For the fastener of the T-stub analysis model, F10T-M20 high-tension bolts and ${\varnothing}19.05-mm$ (3/4-inch) SMA bars were modeled, and the geometric shape of the T-stub was selected to represent the flexural yielding of the T-stub fillet and the axial tensile failure of the fastener.

축방향 인장력을 받는 T-stub은 T-stub과 긴결재의 재료적 물성 특성, T-stub의 기하학적 형상, 긴결재의 직경과 체결력 등의 변화에 의하여 상이한 거동특성을 나타낸다. 이러한 변화의 영향으로 T-stub은 T-stub 플랜지의 휨항복 후 소성파괴, T-stub 필릿부의 휨항복과 긴결재 파단, 긴결재의 파단 등과 같은 세 가지 파괴양상을 나타낸다. 일반적으로 T-stub 플랜지의 두께가 얇고 긴결재의 게이지 거리가 긴 T-stub은 플랜지의 휨항복 후 소성화에 의하여 T-stub 플랜지의 두께가 두껍고 긴결재의 게이지 거리가 짧은 T-stub보다 에너지소산능력이 우수하다. 이 연구는 T-stub 체결에 사용된 긴결재가 T-stub의 에너지소산능력에 미치는 영향을 파악하기 위하여 3차원 비선형 유한요소 해석을 진행하였다. T-stub 해석모델의 긴결재로는 F10T-M20 고장력볼트와 ${\varnothing}19.05mm$(3/4inch)인 SMA 강봉을 모델링하였고, T-stub의 기하학적 형상은 T-stub 필릿부의 휨항복과 긴결재 파단의 파괴를 나타내도록 선택하였다.

Keywords

References

  1. Abolmaali, A., Treadway, J., Aswath, P., Lu. F.K., and McCarthy, E. (2006) Hysteresis Behavior of T-Stub Connections with Superelastic Shape Memory Fasteners, Journal of Constructional Steel Research, Vol.62, pp. 831-838. https://doi.org/10.1016/j.jcsr.2005.11.017
  2. Tanaka, K. (1986) A Thermomechanical Sketch of Shape Memory Effect: One-Dimensional Tensile Behavior, Res Mechanica, Vol.18, pp.251-263.
  3. Liang, C. and Rogers, C.A. (1990) One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials, Journal of Intelligent Material Systems and Structures 1, pp.207-234. https://doi.org/10.1177/1045389X9000100205
  4. Auricchio, F. and Sacco, E. (1997) A One-Dimensional Model for Superelastic Shape-Memory Alloys with Different Elastic Properties Between Austenite and Martensite Int., J. Non-Linear, Mech. Vol.32, pp.1101- 1114. https://doi.org/10.1016/S0020-7462(96)00130-8
  5. Liang, C. and Rogers, C.A. (1992) A Multi-Dimensional Constitutive Model for Shape Memory Alloys, Journal of Engineering Mathematics, Vol.26, pp.429-443. https://doi.org/10.1007/BF00042744
  6. Boyd, J.G. and Lagoudas, D.C. (1996) A Thermodynamical Constitutive Model for Shape Memory Materials. Part I. The Monolithic Shape Memory Alloy, International Journal of Plasticity, Vol.12, No.6, pp.805-842. https://doi.org/10.1016/S0749-6419(96)00030-7
  7. Auricchio, F., Taylor, R.L., and Lubliner, J. (1997) Shape-Memory Alloy: Macromodelling and Numerical Simulations of the Superelastic Behavior, Computer Methods in Applied Mechanics and Engineering, Vol. 146, pp.281-312. https://doi.org/10.1016/S0045-7825(96)01232-7
  8. Speicher, M.S., DesRoches, R., and Leon, R.T. (2011) Experimental Results of a NiTi Shape Memory Alloy (SMA)-Based Recentering Beam-Column Connection, Engineering Structures, Vol.33, pp.2448-2456. https://doi.org/10.1016/j.engstruct.2011.04.018
  9. DesRoches, R., McCormick, J., and Delemont, M. (2004) Cyclic Properties of Superelastic Shape Memory Alloy Wires and Bars, Journal of Structual Engineering, ASCE pp.38-46.
  10. Tamai, H. and Kitagawa, Y. (2002) Pseudoelastic Behavior of Shape Memory Alloy wire and Its Application to Seismic Resistance Member for Building, Computational Materials Science, Vol.25, pp.218-227. https://doi.org/10.1016/S0927-0256(02)00266-5
  11. Abolmaali, A., Treadway, J., Aswath, P., Lu, F.K., and McCarthy, E. (2006) Hysteresis Behavior of T-stub Connections with Superelastic Shape Memory Fasteners, Journal of Constructional Steel Research, Vol.62, pp. 831-838. https://doi.org/10.1016/j.jcsr.2005.11.017
  12. 한국강구조학회(2012) 개정판 강구조설계, 구미서관. Korean Society of Steel Construction (2012) Steel Structure Design, Revised Edition, Goomibook, Korea (in Korean).
  13. SAES Smart Materials, www.shape-memory-alloys.com, SAES Getters Group.
  14. Kulak, G.L., Fisher, J.W., and Struik, J.H.A. (2001) Guide To Design Criteria For Bolted and Riveted Joints 2nd Ed., American Institute of Steel Construction, Wiley, New York.
  15. Thornton, W.A. (1985) Prying Action: A general Treatment, Journal of Environmental Engineering, AISC, Vol.22, pp.67-75.
  16. Astaneh, A. (1985) Procedure For Design and Analysis of Hanger-Type Connections, Engineering Journal, AISC, Vol.22, No.2, pp.63-66.

Cited by

  1. CFT 합성골조의 내진성능을 위한 스마트 반강접합의 이력거동 vol.27, pp.1, 2014, https://doi.org/10.7781/kjoss.2015.27.1.099
  2. 비보강 확장단부판 접합부에 체결된 고장력볼트의 지레작용력 및 축방향 인장강성에 대한 해석적 연구 vol.27, pp.2, 2014, https://doi.org/10.7781/kjoss.2015.27.2.251
  3. 반복하중을 받는 비보강 확장 단부판 접합부의 해석 및 실험적 연구 vol.28, pp.6, 2016, https://doi.org/10.7781/kjoss.2016.28.6.439
  4. Hysteresis Characteristics of Self-Centering Semirigid CFT Column-to-Beam Double Web-Angle Connections vol.31, pp.4, 2014, https://doi.org/10.7781/kjoss.2019.31.5.311
  5. Hysteretic Model for Superelastic NiTi Shape Memory Alloys vol.33, pp.6, 2021, https://doi.org/10.7781/kjoss.2021.33.6.373