• Title/Summary/Keyword: gas leak

Search Result 318, Processing Time 0.027 seconds

Simulation of Remote Field Scanner for Defect Evaluation of Water Wall Tube Within the Fluidized Bed Boiler (유동층보일러 수냉벽튜브 결함평가를 위한 원격자장 스캐너 시뮬레이션에 관한 연구)

  • Gil, Doo-Song;Jung, Gye-Jo;Seo, Jung-Seok;Kim, Hak-Joon;Kwon, Chan-Wool
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Water wall tube is one of the major factors consisting of a fluidized bed boiler and it plays very important role for the generation of electricity within the boiler. But these water wall tubes within the fluidized bed boiler are subject to the ware and corrosion caused by the high temperature gas and the flowing medium. If water leak is occurred, the secondary damage by the water leak will occur. As a result of that, the power generation efficiency decreases noticeably. Therefore, the maintenance of the water wall tube is very important. In this study, we designed a exciter sensor based on simulation and composed a remote field eddy current system for the defect evaluation of the outer water wall tube. Starting from the shape design of exciter, we conducted simulations for various design factors such as the water wall tube size, material, frequency, lift-off and so on. Based on the results, we designed the optimum exciter sensor for the water wall tube test within the fluidized bed boiler.

Study of Quantitative Assessment Standard for Type 1 and Type 2 Gas Cylinders Using Acoustic Emission Testing (음향방출법을 이용한 Type 1 및 Type 2 가스실린더의 정량적 평가기준에 대한 연구)

  • Kim, Dong-Hyun;Lee, Sang-Bum;Kim, Kyung-Hoon;Yoon, Dong-Jin;Bae, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.176-183
    • /
    • 2014
  • Acoustic emission testing (AET) of cylinders is advantageous in that it can be directly conducted on cylinders installed in a car, without needing to dissemble them on a real-time basis. Therefore, users prefer AET over other nondestructive testing methods. Owing to these advantages of AET, it has been approved by the Department of Transportation of the U.S. as a safety evaluation method for pressure containers or as an alternative to the hydroproof testing method. This paper presents a study of the quantitative evaluation criteria for a container having ultrasonic testing defects and also for Type 1 and Type 2 gas cylinders, which are defective seamless pressure containers provided by NK, a manufacturer of pressure containers. For the Type 1 cylinder, the process from crack growth to leak was observed in a repetitive fatigue test using a 113 L container according to ASTM E 1419-02. Further, for the Type 2 cylinder, integrity was evaluated using a 119 L sound container and a container damaged by hydraulic pressure, by the slow-fill method according to ASTM E 2191-02. Based on the AET results of the Type 1 and Type 2 cylinders, quantitative evaluation criteria were established for a defective and non-defective container.

Exergy Analysis of Cryogenic Air Separation Unit for Oxy-fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 엑서지 분석)

  • Choi, Hyeung-chul;Moon, Hung-man;Cho, Jung-ho
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • In order to solve the global warming and reduce greenhouse gas emissions, $CO_2$ capture technology was developed by applying oxy-fuel combustion. But there has been such a problem that its economic efficiency is low due to the high price of oxygen gases. ASU is known to be most suitable method to produce large quantity of oxygen, to reduce the oxygen production cost, the efficiency of ASU need to be improved. To improve the efficiency of ASU, exergy analysis can be used. The exergy analysis provides the information of used energy in the process, the location and size of exergy destruction. In this study, the exergy analysis was used for process developing and optimization of large scale ASU. The process simulation of ASU was conducted, the results were used to calculate the exergy. As a result, to reduce the exergy loss in the cold box of ASU, a lower operating pressure process was suggested. It was confirmed the importance of heat leak and heat loss reduction of cold box. Also, the unit process of ASU which requires thermal integration was confirmed.

A Study on the Improvement of Welding Method for Ice Evaporator (얼음증발기 용접방법 개선에 관한 연구)

  • Lee, Jeong-Youn;Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.558-564
    • /
    • 2021
  • The water purifier market has increased rapidly in recent years. The welding technology of the evaporator is a key component that determines the level of ice production and the cold water performance of an ice purifier. The finger type evaporator of an ice purifier can remove ice and is divided largely into an instant heat method and a hot gas method. In the hot gas type evaporator, particularly during the production process, the pinhole phenomenon inside the copper pipe and clogging problems occur intermittently when welding high-pressure pipes due to the high-temperature oxygen welding. Its use in a water purifier can cause a problem in that ice and cold water do not form, and repairs cannot be made on site. To solve this problem, in this study, a cap jig was applied to improve the welding defect of the hot gas evaporator. In addition, the oxygen welding flame size was adjusted so that the heat source could be well supplied to the cap jig, and the effectiveness was confirmed through a wave pressure test, a test, and a thermal shock test.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.

Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A (벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.382-393
    • /
    • 2020
  • The engineered barrier system of high-level radioactive waste disposal must maintain its performance in the long term, because it must play a role in slowing the rate of leakage to the surrounding rock mass even if a radionuclide leak occurs from the canister. In particular, it is very important to clarify gas dilation flow phenomenon clearly, that occurs only in a medium containing a large amount of clay material such as a bentonite buffer, which can affect the long-term performance of the bentonite buffer. Accordingly, DECOVALEX-2019 Task A was conducted to identify the hydraulic-mechanical mechanism for the dilation flow, and to develop and verify a new numerical analysis technique for quantitative evaluation of gas migration phenomena. In this study, based on the conventional two-phase flow and mechanical behavior with effective stresses in the porous medium, the hydraulic-mechanical model was developed considering the concept of damage to simulate the formation of micro-cracks and expansion of the medium and the corresponding change in the hydraulic properties. Model verification and validation were conducted through comparison with the results of 1D and 3D gas injection tests. As a result of the numerical analysis, it was possible to model the sudden increase in pore water pressure, stress, gas inflow and outflow rate due to the dilation flow induced by gas pressure, however, the influence of the hydraulic-mechanical interaction was underestimated. Nevertheless, this study can provide a preliminary model for the dilation flow and a basis for developing an advanced model. It is believed that it can be used not only for analyzing data from laboratory and field tests, but also for long-term performance evaluation of the high-level radioactive waste disposal system.

Effect of Methodologies for Laser-Induced Plasma Creation on Hydrogen Sensing (레이저 유도 플라스마 생성 방법이 수소 검출에 미치는 영향)

  • Jang, Jung-Ik;Kim, Ki-Bum
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.291-297
    • /
    • 2015
  • As promising future energy source, hydrogen has been drawing much attention; however, it is easily leaked from the small gap in any storage container due to its find molecule size. In this study, Laser induced breakdown spectroscopy(LIBS) was used for hydrogen leak detection, and feasibility of the scheme was evaluated based on different way for plasma generation. Laser power of 295 mW was required for generating plasma on metal surface to measure hydrogen atomic emission while approximately 2.5 times higher laser power was needed for plasma formation directly in the hydrogen gas stream. It was shown that peak to base ratio increased linearly with increasing the concentration of hydrogen. It can be concluded that LIBS is a viable technique for hydrogen sensing when the concentration of hydrogen is less than 5%.

The Proposal of Installations Standards for Commercial Kitchen Automatic Fire System (상업용 주방자동소화장치 도입과 설치기준 제안)

  • Lee, Changwoo;Kang, Dowoo;Oh, Seungju;Ham, Eungu;Cho, Yongsun
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.89-97
    • /
    • 2016
  • According to the statistics released by Ministry of Public Safety and Security, the number of restaurant fires in Korea reached around 2,400 and 169 damages of human life and damages to property was approximately over $8.8 billion for recent 3 years. It could be desirable having automatic commercial fire-extinguishing equipment at commercial facilities excluding housing facilities for the safety, applying at the place first where it has been more risky and expected fire can be occurred relatively because economical burden can be accelerated. In order to do this, adjust its level to meet the same level of the kitchen for 'Specific Target for Fire Fighting' that "gas leak alarm" has be equipped relevant regulations and it is considered and reasonable to expand the limit of application gradually.

Mitigation of Ammonia Dispersion with Mesh Barrier under Various Atmospheric Stability Conditions

  • Gerdroodbary, M. Barzegar;Mokhtari, Mojtaba;Bishehsari, Shervin;Fallah, Keivan
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.125-136
    • /
    • 2016
  • In this study, the effects of the mesh barrier on the free dispersion of ammonia were numerically investigated under different atmospheric conditions. This study presents the detail and flow feature of the dispersion of ammonia through the mesh barrier on various free stream conditions to decline and limit the toxic danger of the ammonia. It is assumed that the dispersion of the ammonia occurred through the leakage in the pipeline. Parametric studies were conducted on the performance of the mesh barrier by using the Reynolds-averaged Navier-Stokes equations with realizable k-${\varepsilon}$ turbulence model. Numerical simulations of ammonia dispersion in the presence of mesh barrier revealed significant results in a fully turbulent free stream condition. The results clearly show that the flow behavior was found to be a direct result of mesh size and ammonia dispersion is highly influenced by these changes in flow patterns in downstream. In fact, the flow regime becomes laminar as flow passes through mesh barrier. According to the results, the mesh barrier decreased the maximum concentration of the ammonia gas and limited the risk zone (more than 500 ppm) lower than 2 m height. Furthermore, a significant reduction occurs in the slope of the upper boundary of $NH_3$ risk zone distribution at downstream when a mesh barrier is presented. Thus, this device highly restricts the leak distribution of ammonia in the industrial plan.

Technical Review on Risk Assessment Methodology for Carbon Marine Geological Storage Systems (이산화탄소 해양 지중저장 시스템에서의 누출 위해성 평가방법에 관한 기술적 검토)

  • Hwang, Jin-Hwan;Kang, Seong-Gil;Park, Young-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • Carbon Capture and Storage (CCS) technology mitigates the emission amount of carbon dioxide into the atmosphere and can reduce green house effect which causes the climate change. Deep saline aquifer or obsolete oil/gas storage etc. in the marine geological structure are considered as the candidates for the storage. The injection and storage relating technology have been interested in the global society, however the adverse effect caused by leakage from the system failure. Even the safety level of the CCS is very high and there is almost no possibility to leak but, still the risk to marine ecosystem of the high concentrated carbon dioxide exposure is not verified. The present study introduces the system and environmental risk assessment methods. The feature, event and process approach can be a good starting point and we found the some possibility from the fault tree analysis for evaluation. From the FEP analysis, we drove the possible scenario which we need to concentrate on the construction and operation stages.