DOI QR코드

DOI QR Code

Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A

벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A

  • Lee, Jaewon (Radioactive Waste Disposal Research Division Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Changsoo (Radioactive Waste Disposal Research Division Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Geon Young (Radioactive Waste Disposal Research Division Korea Atomic Energy Research Institute (KAERI))
  • 이재원 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 이창수 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 김건영 (한국원자력연구원 방사성폐기물처분연구부)
  • Received : 2020.08.18
  • Accepted : 2020.08.25
  • Published : 2020.08.31

Abstract

The engineered barrier system of high-level radioactive waste disposal must maintain its performance in the long term, because it must play a role in slowing the rate of leakage to the surrounding rock mass even if a radionuclide leak occurs from the canister. In particular, it is very important to clarify gas dilation flow phenomenon clearly, that occurs only in a medium containing a large amount of clay material such as a bentonite buffer, which can affect the long-term performance of the bentonite buffer. Accordingly, DECOVALEX-2019 Task A was conducted to identify the hydraulic-mechanical mechanism for the dilation flow, and to develop and verify a new numerical analysis technique for quantitative evaluation of gas migration phenomena. In this study, based on the conventional two-phase flow and mechanical behavior with effective stresses in the porous medium, the hydraulic-mechanical model was developed considering the concept of damage to simulate the formation of micro-cracks and expansion of the medium and the corresponding change in the hydraulic properties. Model verification and validation were conducted through comparison with the results of 1D and 3D gas injection tests. As a result of the numerical analysis, it was possible to model the sudden increase in pore water pressure, stress, gas inflow and outflow rate due to the dilation flow induced by gas pressure, however, the influence of the hydraulic-mechanical interaction was underestimated. Nevertheless, this study can provide a preliminary model for the dilation flow and a basis for developing an advanced model. It is believed that it can be used not only for analyzing data from laboratory and field tests, but also for long-term performance evaluation of the high-level radioactive waste disposal system.

고준위방사성폐기물을 처분하기 위한 심층처분시스템의 공학적 방벽은 처분 용기에서 방사성 핵종 누출이 발생하더라도 주변 암반으로의 누출 속도를 늦춰주는 역할을 수행해야하기 때문에 장기적으로 그 성능을 유지하여야 한다. 특히 벤토나이트 완충재와 같이 점토 물질을 다량 함유한 매질에서만 나타나는 기체 흐름 현상인 팽창 흐름은 벤토나이트 완충재의 장기 성능에 영향을 미칠 수 있기 때문에 이 현상을 명확히 규명하는 것이 매우 중요하다. 이에 따라 DECOVALEX-2019 Task A에서는 팽창 흐름에 대한 수리-역학적 메커니즘을 규명하고, 기체 이동 현상의 정량적 평가를 위한 새로운 수치 해석 기법 개발 및 검증을 수행하고자 진행되었다. 이를 위해 본 연구에서는 기존의 전통적인 다공성 매질에서의 2상 유동 및 유효응력 개념을 고려한 역학 모델을 기반으로, 손상도 개념을 적용함으로써 매질의 변형에 의한 기체의 팽창 흐름을 모사할 수 있는 수리-역학적 상호작용을 고려한 해석 모델을 개발하였다. 또한 개발된 모델을 이용하여 1차원 및 3차원 기체 주입 시험 결과와의 비교를 통해 모델 검증 및 적용성 검토를 수행하였다. 수치 해석 결과 기체 압력에 의한 팽창 흐름으로 인한 갑작스러운 공극 수압, 응력, 기체 주입량 및 유출량 증가 현상을 확인할 수 있었지만, 개발된 해석 모델에서 수리-역학적 상호작용의 영향이 과소평가 되는 한계를 확인할 수 있었다. 그럼에도 불구하고 본 연구는 팽창 흐름에 대한 예비 모델을 제공하고 후속 연구의 발전된 모델을 개발하기 위한 기반을 제공한다는 점에서 의의가 있다. 또한 본 연구에서 개발된 수리-역학적 상호작용을 고려한 수치 모델은 향후 실험실 및 현장 시험 결과 데이터 분석에 활용될 수 있을 뿐만 아니라, 실제 고준위방사성폐기물 심층처분시스템의 장기 성능평가에도 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Cuss, R., Harrington, J., Giot, R., Auvray, C., 2014, Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone, In: Norris, S., Bruno, J., (eds) Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Geological Society, London, Special Publications, Vol. 400, pp. 507-519.
  2. COMSOL, Inc., 2018, COMSOL Multiphysics - Reference manual version 5.4, Documentation for COMSOL Multiphysics 5.4, USA.
  3. Daniels, K.A., Harrington, J.F., 2017, The response of compact bentonite during a 1D gas flow test, British Geological Survey Open Report, OR/17/067, British Geological Survey, s.l.
  4. Davis, J.P., Davis, D.K., 1999, Stress-dependent permeability: characterization and modeling, Society of Petroleum Engineers, SPE Paper no. 56813.
  5. Davis, R.O., Selvadurai, A.P., 2002, Plasticity and Geomechanics, Cambridge University Press, Cambridge.
  6. Fall, M., Nasir, O., Nguyen, T., 2014, A coupled hydromechanical model for simulation of gas migration in host sedimentary rocks for nuclear waste repositories, Engineering Geology, Vol. 176, pp. 24-44. https://doi.org/10.1016/j.enggeo.2014.04.003
  7. Fatt, I., Klikoff, W.A., 1959, Effect of Fractional Wettability on Multiphase Flow Through Porous Media, AIME Transactions, Vol. 216, pp. 246.
  8. Gawin, D., Majorana, C.E., Schrefler, B.A., 2001, Modelling thermo-mechanical behaviour of high performance concrete in high temperature environment, In: de Borst et al., (Eds.), Fracture Mechanics of Concrete Structure.
  9. Harrington, J.F., Graham, C.C., Cuss, R.J., Norris, S., 2017, Gas network development in a precompacted bentonite experiment: Evidence of generation and evolution, Applied Clay Science, Vol. 147, pp. 80-89. https://doi.org/10.1016/j.clay.2017.07.005
  10. Harrington, J.F. and Horseman, S.T., 2003, Gas migration in KBS-3 buffer bentonite: Sensitivity of test parameters to experimental boundary conditions, SKB TR-03-02, SKB, Sweden.
  11. Hoch, A.R., Cliffe, K.A., Swift, B.T., Rodwell, W.R., 2004, Modelling Gas Migrationin Compacted Bentonite: GAMBIT Club Phase 3, Final Report, POSIVA, Olkiluoto, Finland.
  12. Horseman, S.T., 1996, Generation and migration of repository gases: some key considerations, Radioactive Waste Disposal, Proc. International 2-Day Conference, London, 21-22 November 1996, IBC Technical Services.
  13. Horseman, S.T., Harrington, J.F., Sellin, P., 1997, Gas migration in Mx80 Buffer Bentonite Symposium on the Scientific Basis for Nuclear Waste Management XX, Boston, Materials Research Society, pp. 1003-1010.
  14. Horseman, S.T., Harrington, J.F., Sellin, P., 1999, Gas migration in clay barriers, Engineering Geology, Vol. 54, pp. 139-149. https://doi.org/10.1016/S0013-7952(99)00069-1
  15. Jason, L., Huerta, G., Pijaudier-Cabot, S., Ghavamian, S., 2006 An elastic-plastic damage formulation for concrete: application to elementary tests and comparison with an isotropic model, Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 7077-7092. https://doi.org/10.1016/j.cma.2005.04.017
  16. Jirasek, M., 2004, Non-local damage mechanics with application to concrete, French Journal of Civil Engineering, Vol. 8, pp. 683-707.
  17. Lee, J., Fenves, G.L., 1998, Plastic-damage model for cyclic loading of concrete structures, Journal of Engineering Mechanics, Vol. 124, pp. 892. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  18. Lee, J., Lee, C., Kim, G.Y., 2019, Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A, Tunnel & Underground Space, Vol. 29, No. 4, pp. 262-279.
  19. Marschall, P., Horseman, S.T., Gimmi, T., 2005, Characterisation of gas transport properties of the opalinus clay, a potential host rock formation for radioactive waste disposal, Oil and Gas Science and Technology - Rev. IFP, Vol. 60, pp. 121-139. https://doi.org/10.2516/ogst:2005008
  20. Mazars, J., 1986, A description of micro and macroscale damage of concrete structure, Engineering Fracture Mechanics, Vol. 25, pp. 729-737. https://doi.org/10.1016/0013-7944(86)90036-6
  21. Meschke, G., Grasberger, S., 2003, Numerical modeling of coupled hydromechanical degradation of cementitious materials, Journal of Engineering Mechanics, Vol. 129(4), pp. 383-392. https://doi.org/10.1061/(asce)0733-9399(2003)129:4(383)
  22. Nash, P.J., Swift, B.T., Goodfield, M., Rodwell, W.R., 1998, Modelling Gas Migration in Compacted Bentonite: A report produced for the GAMBIT Club, POSIVA, Helsinki.
  23. NEA-EC, 2003, Engineered Barrier Systems and the Safety of Deep Geological Repositories, State of-the-art Report, EUR 19964 EN, Brussels: European Commission, Paris: OECD, ISBN 92-64-18498-8.
  24. Nguyen, T., Le, A., 2015, Simultaneous gas and water flow in a damage-susceptible bedded argillaceous rock, Canadian Geotechnical Journal, Vol. 52, pp. 18-32. https://doi.org/10.1139/cgj-2013-0457
  25. Rutqvist, J., Wu, Y-S., Tsang, C.F., Bodvarsson, G., 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp. 429-442. https://doi.org/10.1016/S1365-1609(02)00022-9
  26. Simo, J., Ju, J., 1987, Strain- and stress-based continuum damage models-I formulation, International Journal of Solids and Structures, Vol. 23, pp. 821-840. https://doi.org/10.1016/0020-7683(87)90083-7
  27. Souley, M., Homand, F., Pepa, S., Hoxha, D., 2001, Damage-induced permeability changes in granite: a case example at the URL in Canada, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 38 (2), pp. 297-310. https://doi.org/10.1016/S1365-1609(01)00002-8
  28. Tang, C.A., Tham, L.G., Lee, P.K.K., Yang, T.H., Li, L.C., 2002, Coupled analysis of flow, stress and damage (FSD) in rock failure, International Journal of Rock Mechanics & Mining Sciences, Vol. 39, pp. 477-489. https://doi.org/10.1016/S1365-1609(02)00023-0
  29. Van Genuchten, M., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., Vol. 44, pp. 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x