• Title/Summary/Keyword: gain matrix

Search Result 421, Processing Time 0.028 seconds

Robust Stability Bounds for Discrete-Time Regulators with Computation Delays (연산지연을 가진 이산시간 레규레이터에 대한 강인한 안정성 유계)

  • 배종일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.174-180
    • /
    • 1998
  • Robust stability of discrete-time regulators which utilize state predictors to compensate computation delays is considered. Novel expressions for the return difference matrices and the complementary sensitivity matrices at the input and the output of the regulator are found to obtain simple bounds for unstructured perturbations. Robust stability for pertubations of the system matrix and /or the gain matrix is also considered. under certain restriction on the nominal system simple bounds for the pertubations are obtained directly from the characteristic equation. It is shown that as far as the effect of the computation delays concerns these bounds have explicit relation to those for the unstructured pertubations.

  • PDF

Takagi-Sugeno Fuzzy Integral Control for Asymmetric Half-Bridge DC/DC Converter

  • Chung, Gyo-Bum
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • In this paper, Takagi-Sugeno (TS) fuzzy integral control is investigated to regulate the output voltage of an asymmetric half-bridge (AHB) DC/DC converter; First, we model the dynamic characteristics of the AHB DC/DC converter with state-space averaging method and small perturbation at an operating point. After introducing an additional integral state of the output regulation error, we obtain the $5^{th}$-order TS fuzzy model of the AHB DC/DC converter. Second, the concept of the parallel distributed compensation is applied to design the fuzzy integral controller, in which the state feedback gains are obtained by solving the linear matrix inequalities (LMIs). Finally, simulation results are presented to show the performance of the considered design method as the output voltage regulator and compared to the results for which the conventional loop gain method is used.

Advanced Channel Estimation Method for IEEE 802.11p/WAVE System

  • Jang, DongSeon;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.27-35
    • /
    • 2019
  • In this paper, we propose an advanced Minimum Mean Square Error (MMSE) channel estimation method for IEEE 802.11p/Wireless Access in Vehicular Environments (WAVE) systems. To improve the performance of MMSE method, we apply the Weighted Sum using Update Matrix (WSUM) scheme to the step of calculating the instantaneously estimated channel and then, a time domain selectively averaging method is applied after the WSUM scheme. Based on that, the accuracy of instantaneously estimated channel increases and then, the accuracy of auto covariance matrix also increases. Consequently, we can achieve the performance gain over the conventional MMSE method. Through simulations based on the IEEE 802.11p standard, it is confirmed that the proposed scheme can outperform the existing channel estimation schemes.

Antenna Array Calibration for Digital Beamforming (디지털 빔 형성을 위한 배열 안테나 오차 보정)

  • 최희영;박형근;김영수;방승찬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • There are many antenna array errors. They will distort the array beam pattern and result in an increased sidelobe level. A calibration technique is proposed for correcting the antenna array errors such as mutual coupling and unequal feeder characteristics. These are modeled as a matrix representing the interaction between the radiating elements. The matrix is estimated from the measured array response vectors. The antenna array errors are corrected by modifying the beamforming weight vector. It is verified by the electromagnetic simulation and experiment that the proposed technique reduces the sidelobe level and increases the antenna gain.

Design of the Optimal Controller for Takagi-Sugeno Fuzzy Systems and Its Application to Spacecraft control (Takagi-Sugeno 퍼지시스템에 대한 최적 제어기 설계 및 우주 비행체의 자세 제어 응용)

  • Park, Yeon-Muk;Tak, Min-Je
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.589-596
    • /
    • 2001
  • In this paper, a new design methodology for the optimal control of nonlinear systems described by the TS(Takagi-Sugeno) fuzzy model is proposed. First, a new theorem concerning the optimal stabilizing control of a general nonlinear dynamic system is proposed. Next, based on the proposed theorem and the inverse optimal approach, an optimal controller synthesis procedure for a TS fuzzy system is given, Also, it is shown that the optimal controller can be found by solving a linear matrix inequality problem. Finally, the proposed method is applied to the attitude control of a rigid spacecraft to demonstrate its validity.

  • PDF

Robust Tracking of Constrained Uncertain Linear Systems using a High-gain Disturbance Observer (고이득 외란 관측기에 기반한 입력 제약 조건이 있는 불확실한 선형 시스템의 강인 추종 제어)

  • Yoon, Mun Chae;Kim, Jung-Su;Back, Juhoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • This paper proposes a robust tracking control for constrained uncertain linear systems by combining a disturbance observer (DOB) and linear matrix inequality (LMI) based state feedback control. To this end, the state feedback control is designed for the nominal system and then a DOB based feed-forward control is added to reject uncertainties. In doing so, the DOB and state feedback controller are joined in a way that the combined control satisfies the input constraints and closed loop stability is guaranteed. Simulation results are provided to show that the proposed control scheme successfully stabilizes uncertain systems.

Adaptive Fault-Tolerant Dynamic Output Feedback Control for a Class of Linear Time-Delay Systems

  • Ye, Dan;Yang, Guang-Hong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.149-159
    • /
    • 2008
  • This paper considers the problem of adaptive fault-tolerant guaranteed cost controller design via dynamic output feedback for a class of linear time-delay systems against actuator faults. A new variable gain controller is established, whose gains are tuned by the designed adaptive laws. More relaxed sufficient conditions are derived in terms of linear matrix inequalities (LMIs), compared with the corresponding fault-tolerant controller with fixed gains. A real application example about river pollution process is presented to show the effectiveness of the proposed method.

Intelligent Digital Redesign for Nonlinear Interconnected Systems using Decentralized Fuzzy Control

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.420-428
    • /
    • 2012
  • In this paper, a novel intelligent digital redesign (IDR) technique is proposed for the nonlinear interconnected systems which can be represented by a Takagi-Sugeno (T-S) fuzzy model. The IDR technique is to convert a pre-designed analog controller into an equivalent digital one. To develop this method, the discretized models of the analog and digital closed-loop system with the decentralized controller are presented, respectively. Using these discretized models, the digital decentralized control gain is obtained to minimize the norm between the state variables of the analog and digital closed-loop systems and stabilize the digital closed-loop system. Its sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to verify the effectiveness of the proposed technique.

Non-parametric Linear MMSE Filter in Wireless Ad-Hoc Networks

  • Seo, Heejin;Shim, Byonghyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.54-55
    • /
    • 2015
  • In this paper, we propose a method pursuing robustness in ad hoc network system when the CSI of interferers is unavailable. The non-parametric linear minimum mean square error filter is exploited to achieve large fraction of the MMSE filter transmission capacity employing the perfect covariance matrix information. From the numerical results, we show that the proposed scheme brings substantial transmission capacity gain over conventional MMSE filter using sample covariance matrix.

  • PDF

NON-FRAGILE GUARANTEED COST CONTROL OF UNCERTAIN LARGE-SCALE SYSTEMS WITH TIME-VARYING DELAYS

  • Park, Ju-H.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.61-76
    • /
    • 2002
  • The robust non-fragile guaranteed cost control problem is studied in this paper for class of uncertain linear large-scale systems with time-varying delays in subsystem interconnections and given quadratic cost functions. The uncertainty in the system is assumed to be norm-hounded arid time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound far all admissible uncertainties. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost contrellers is 7iven in terms of the feasible solution to a certain LMI. Finally, in order to show the application of the proposed method, a numerical example is included.