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ABSTRACT

In this paper, we propose a method pursuing robustness in ad hoc network system when the CSI of interferers is
unavailable. The non-parametric linear minimum mean square error filter is exploited to achieve large fraction of the
MMSE filter transmission capacity employing the perfect covariance matrix information. From the numerical results, we
show that the proposed scheme brings substantial transmission capacity gain over conventional MMSE filter using
sample covariance matrix.

1. INTRODUCTION

Recently, Jindal et al. proposed that the sample covariance
matrix can be estimated by listening to the observations including
interference and noise under the imperfect CSI assumption [1].
Although this scheme provides a relatively accurate covariance
matrix, the data rate loss when the covariance matrix is sampled
with the small observations is substantial. In this paper, we put
forth an approach improving the network-wide throughput by
employing non-parametric linear minimum mean square error
(MMSE) receive filter. We show that the maximum SINR of the
proposed method is equivalent to that of the conventional MMSE
filter when the covariance matrix is perfectly estimated. Using this
non-parametric MMSE filter, the proposed method achieves l

arge fraction of MMSE filter transmission capacity without
transmission data rate loss.

2. SYSTEM MODEL AND NON-PARAMETRIC LINEAR
MMSE FILTER

In ad hoc network, the transmitters are located according to a
2-D homogeneous Poisson point process (PPP) of density λ 
(interferers/m2), and each receiver is randomly located at d meters
away from the corresponding transmitter. Due to the stationarity of
the Poisson process, we focus on a typical transmitter-receiver,
denoted by Txd and Rxd. In the perspective of Rxd, the set of
interferers also forms a homogeneous PPP, denoted by
 ∈ℕ where  and  are the location and
channel vector of the i-th transmitting node with respect to the
typical receiver [2]. Under the frequency-flat channel model, the
N-dimensional received signal y can be described by

y h 
∈
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where  is a path-loss exponent ( > 2). If a unit norm receive
filter vd is employed, the estimated desired symbol becomes
 v

y and hence resulting signal-to-interference-and-noise
(SINR) ratio becomes
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The outage probability at SINR threshold  is Pout(λ) = P[SINR ≤
], the maximum interferer density is
 max  Pout ≤  where  is outage constraint, and

the transmission capacity of the ad hoc network is
  log bpsHz

 [1].
It is well known that the MMSE filter optimally pursues

balance between signal boost and interference suppression for
maximizing the SINR [1]. The normalized MMSE receive filter is
given by v  

h∥h∥where
 SNR


I 

∈


hh
 is the spatial co-variance of

the interference plus noise and SNR



. Plugging v into

(2), the maximum received SINR of the MMSE filter becomes
SINRMMSE h

h.
The MMSE with imperfect CSI [1] estimates the sampled

covariance matrix by listening to interferer transmissions in the
absence of desired signal. If the desired transmitter remains
inactive for K symbols, the receiver can employ the K observations
to form the sample covariance as
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where r represents the -th observation of the noise plus
interference. By replacing  with , the resulting SINR becomes

SINR 
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. Under the assumption that all

interferers transmit independent Gaussian symbols, the expected
SINR with respect to the  distribution is [3]
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Note that the expected SINR of the MMSE with imperfect CSI is
smaller than that of MMSE based on the perfect CSI due to the

scaling factor 


. Also, when the number of observations

is very large,  becomes close to .
In practice, the receiver is hard to employ the parametric

MMSE filter (??) since it is not easy for the receiver estimates CSI
of all the interferers in a decentralized network. Although the
MMSE with imperfect CSI method yields a relatively exact
covariance matrix and achieves the large fraction of the perfect CSI
transmission capacity [1], it has the following drawbacks. First, the
desired transmitter should be in inactive mode for K symbol
durations when the receiver estimates K observations. Second, if
the channel (under block fading) is changing per T symbol period,
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Fig. 1 Transmission Capacity versus N for  = 0.1,  = 1,   
= 3, d = 1, and K = 10.

then effective data rate is reduced by the factor of


.

As a way to overcome these shortcomings, we propose the
receive filter based on the non-parametric linear MMSE estimation.
In the proposed method, we will show that the covariance matrix
can be replaced with autocorrelation of received signal y including
desired channel information h.
From [4], the output of the linear MMSE is

 vd
HyRsdyRyy

y hd
Hhdhd

Hy (5)

Regardless of the inclusion of desired channel information, we
prove that the linear MMSE filter in (5) can achieve the maximum
SINR of conventional MMSE filter in the following theorem.
Theorem 2.1: The linear MMSE filter using non-parametric

autocorrelation R is

v hh
h (6)

and the corresponding SINR is SINRh
h

proof 2.2: From (2), the SINR of the MMSE filter (6) can
be rewritten as

SINR
h
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By the Sherman-Morrison formula [4], an inverse of covariance
matrix hh

 is

hh
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h
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(8)

Let  h
h, then (7) becomes

SINR




 h
h (9)

Theorem 2.1 tells us that we can achieve the maximum
transmission capacity of the linear MMSE filter (6) even with the
variation of covariance matrix. However, since the exist of Ryy

 is
not always guaranteed, we will find the alternative form of the
non-parametric linear MMSE filter.
From (8), we can find that

v
  

h
 (10)

Using the eigendecomposition [5], (10) can be expressed as

v
 h

R
† hhR† (11)

Since R
† R† whenSNR


→, (6) can be reduced to

v
R

† hh† h (12)

where R 

YY is the sample correlation matrix

obtained from the received signal set Y yy⋯y  .
In order to obtain an accurate sample covariance matrix in (4), the
number of observations K should be very large. To do so, the
transmitter should remain in inactive mode for K symbol duration.
Whereas, no such requirement is necessary for the proposed
approach in (12). In contrast to the fact that K is the overhead in
the packet transmission, M in (12) can be freely chosen within the
range of the packet length. Due to the fact that the length of the
packet is typically on the order of hundreds of symbols, the
expected SINR and transmission capacity using R  is larger than
employing .

3. SIMULATION AND DISCUSSION

The simulation setup is based on the 2-D PPP transmitters. In Fig.
2, we plot the transmission capacity as a function of N. Note that
K = 10 (10% of packet length) and M is the packet length. In
particular, although the proposed filter leaves a performance gap
from MMSE, the transmission capacity of the proposed method is
larger than the MMSE with K samples and PZF, and the gain gets

larger as N increases. Due to the scaling factor of 


, the

expected SINR of the MMSE with K samples is smaller than that
of the MMSE with full CSI, the transmission capacity of the
MMSE with K samples is decreased when K is a fixed number and
N goes to large number.
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