Ground-based optical sensing over the crop canopy provides information on the mass of plant body which reflects the light, as well as crop nitrogen content which is closely related to the greenness of plant leaves. This method has the merits of being non-destructive real-time based, and thus can be conveniently used for decision making on application of nitrogen fertilizers for crops standing in fields. In the present study relationships among leaf nitrogen content of rice canopy, crop growth status, and Normalized Difference Vegetation Index (NDVI) values were investigated. We measured Green normalized difference vegetation index($gNDVI=({\rho}0.80{\mu}m-{\rho}0.55{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.55{\mu}m)$) and NDVI($({\rho}0.80{\mu}m-{\rho}0.68{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.68{\mu}m)$) were measured by using two different active sensors (Greenseeker, NTech Inc. USA). The study was conducted in the years 2005-06 during the rice growing season at the experimental plots of National Institute of Agricultural Science and Technology located at Suwon, Korea. The experiments carried out with randomized complete block design with the application of four levels of nitrogen fertilizers (0, 70, 100, 130kg N/ha) and same amount of phosphorous and potassium content of the fertilizers. gNDVI and rNDVI increased as growth advanced and reached to maximum values at around early August, G(NDVI) were a decrease in values of observed with the crop maturation. gNDVI values and leaf nitrogen content were highly correlated at early July in 2005 and 2006. On the basis of this finding we attempted to estimate the leaf N contents using gNDVI data obtained in 2005 and 2006. The determination coefficients of the linear model by gNDVI in the years 2005 and 2006 were 0.88 and 0.94, respectively. The measured and estimated leaf N contents using gNDVI values showed good agreement ($R^2=0.86^{***}$). Results from this study show that gNDVI values represent a significant positive correlation with leaf N contents and can be used to estimate leaf N before the panicle formation stage. gNDVI appeared to be a very effective parameter to estimate leaf N content the rice canopy.
Hong Suk-Young;Kim Yi-Hyun;Choi Chul-Uong;Lee Jee-Min;Lee Jae-Jung;Rim Sang-Kyu;Kwak Han-Kang
Proceedings of the KSRS Conference
/
2006.03a
/
pp.193-197
/
2006
지상측정 및 위성영상탑재 광학센서를 이용하여 벼 주요 생육시기에 대한 군락의 엽질소 함량을 추정하였다. 6월부터 10월에 걸쳐 주요 생육시기 $5{\sim}6$회에 걸쳐 Orbview 및 QuickBird와 같이 4m 이하의 고해상도 다중영상을 취득하였다. 위성영상 취득일에 가능한한 맞추어 인공광원을 사용하는 2종의 능동형 광학 (G)NDVI 센서를 이용한 벼 군락의 반사특성을 측정하였으며 동시에 식물체 샘플링을 통한 생육량, 엽면적지수, 엽질소 함량 등을 분석하였다. 시기별 영상의 분광반사특성 및 (G)NDVI와 벼 생육량 및 엽질소 함량과의 관계를 알아보기 위해 상관분석 및 회귀분석을 수행하였다. 지상센서 및 위성영상 유래 (G)NDVI의 값을 서로 비교해 보면 전체적으로 지상센서를 이용하여 측정한 (G)NDVI값이 위성영상 유래 (G)NDVI값보다 크게 나타났다. 하지만 두 센서 모두 엽면적지수 변화에 따른 (G)NDVI의 변화를 살펴보면 엽면적지수가 2 정도가 될 때까지는 함께 증가하다가 2보다 커지면서는 변화가 없이 머무르는 경향은 같게 나타났다. 엽면적지수의 변화는 군락의 엽질소함량 변화와 선형적인 관계($R^2=0.80$)로 나타났다. 분얼기부터 성숙초기까지의 자료를 이용하여 지상센서 및 위성영상 유래 (G)NDVI를 이용한 벼 군락의 엽질소 함량과의 관계를 살펴보니 지수함수적 관계($R^2=0.90$)로 나타났다. 위성영상 유래 (G)NDVI를 이용한 벼 군락의 엽질소 함량 추정식을 이용하여 신평면 최고쌀 생산단지에 대한 엽질소 함량 지도를 작성하였다.
Remote sensing technique in agriculture can be used to identify chlorophyll content, biomass, and yield caused from N stress level. This study was conducted to evaluate biomass, N stress levels, and yield of tobacco (Nicotiana tabacum L.) under sand culture in a plastic film house using ground-based remote sensors. Nitrogen rates applied were 40, 60, 80, 100, 120, and 140 percent of N concentration in the Hoagland's nutrient solution. Sensor readings for reflectance indices were taken at 30, 35, 40, 45, 50 and 60 days after transplanting(DAT). Reflectance indices measured at 40th DAT were highly correlated with dry weight(DW) of tobacco leaves and N uptake by leaves. Especially, green normalized difference vegetation index(gNDVI) from spectroradiometer and aNDVI from Crop Circle passive sensor were able to explain 85% and 84% of DW variability and 85% and 92% of N uptake variability, respectively. All the reflectance indices measured at each sampling date during the growing season were significantly correlated with tobacco yield. Especially the gNDVI derived from spectroradiometer readings at the 40th DAT explained 72% of yield variability. N rates of tobacco were distinguished by sufficiency index calculated using the ratio of reflectance indices of stress to optimum plot of N treatment. Consequently results indicate that the reflectance indices by ground-based remote sensor can be used to predict tobacco yield and recommend the optimum application rate of N fertilizer for top dressing of tobacco.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.396-396
/
2018
우리나라의 가뭄은 통계적으로 5~6년 주기로 발생해 왔으나 최근에는 가뭄의 발생 빈도가 점점 증가하고 주기 또한 짧아지는 경향을 보이고 있다. 가뭄의 패턴 또한 지속적이고 국지적으로 강하게 나타내는 경향이 있어 피해가 심각해지고 있다. 2017년도에는 모내기가 시작되어야 할 시기에 극심한 물 부족으로 이앙시기가 지연되고 밭작물이 마르는 피해를 겪었다. 국가가뭄정보센터의 2017년 가뭄예경보 자료에 따르면, 1~7월에는 안성, 서산, 홍성 지역을 중심으로, 7~9월에는 남해안지역을 중심으로, 10월~12월에는 울주, 경주, 밀양 지역을 중심으로 가뭄이 나타났음을 확인 할 수 있다. 가뭄 파악을 위한 방법 중 하나로 인공위성영상을 활용한 원격탐사 기법이 있으며, 국내에서는 관측주기가 짧고 관측폭이 넓은 Terra MODIS 영상을 활용하는 연구 사례를 다수 찾아볼 수 있다. 최근에는 드론에 NIR, 열화상, 초분광 카메라 등을 탑재하여 탐지범위가 국소적이지만 가뭄에 따른 작물의 상태를 보다 상세하게 파악하기 위한 연구가 시도되고 있다. 본 연구에서는 드론을 이용한 가뭄지역의 영상특성을 분석하는 기초자료를 구축하기 위하여 2017년 극심한 가뭄이 발생하였던 안성지역을 대상으로 Terra MODIS NDVI를 이용한 식생상태지수(VCI), 정규식생지수(SVI)를 분석하여 가뭄으로 추정되는 드론촬영 대상지역을 파악하였으며, 선정된 지역을 대상으로 R-G-NIR 카메라를 탑재한 드론 촬영을 실시하였다. 드론영상의 전처리를 통하여 고해상도 NDVI영상을 작성하고 지상의 작물 및 토지이용 상태에 따른 NDVI 분포특성과 Terra MODIS NDVI와의 차이점을 분석하였다.
Kim Yi-Hyun;Hong Suk-Young;Lee Jee-Min;Rim Sang-Kyu;Kwak Han-Kang
Proceedings of the KSRS Conference
/
2006.03a
/
pp.218-222
/
2006
본 연구에서는 광학센서를 이용한 벼 군락의 질소수준별 생육단계별 식생지수와 쌀 단백질함량과의 관계를 구명하여 쌀 단백질함량을 추정하는 것을 목적으로 하였다. 질소의 경우 0, 7, 10, 13kg/10a등 4수준으로 범위를 두고 처리하여 인공광원을 사용하는 2종의 능동형 광학(G)NDVI 센서를 이용하여 벼 군락의 반사특성을 측정하였고, 동시에 식물체의 생육량, 엽면적지수, 엽 질소함량 등을 분석하였다. 생육단계에 따른 식생지수 변화를 분석해 본 결과 (G)NDVI값은 이앙기 이후 급속히 증가하다가 수잉기 전후로 수확기에 이르기까지 감소하는 경향을 보였다. 질소 수준에 따른 식생지수 변화의 경우 무처리구를 제외하고는 처리수준별 G(NDVI)값이 큰 변이가 나타나지는 않았지만, 처리 수준에 따라 일정하게 식생지수 차이를 보였다. (G)NDVI값 과 엽질소 함량과의 시기별 상관분석 결과 유효분얼기, 유수형성기 보다는 출수기, 결실기에 엽 질소 함량과의 상관이 더 높게 나타났고, GNDVI값이 NDVI값보다 상관이 더 높게 나타났다. 출수 후 쌀 단백질 함량과 엽 질소 함량과의 관계를 조사해보았는데 높은 정의 상관관계($r=0.96^{**}$)를 보였다. 출수기에서 수확기까지 자료를 이용한 각 시기별 G(NDVI)값과 쌀 단백질 함량과의 상관분석 결과 수확기에 가까울수록 상관계수가 높게 나타났다. GNDVI값을 이용한 수확기 쌀 단백질 함량 추정식($R^2=0.92$)을 작성하였고, 쌀 단백질 함량 추정값과 실측값을 비교해보았더니 1:1선에 근접하게 분포하였다($R^2=0.90$).
Kim, Bo Yeon;Park, Seo Kyoung;Lee, Jung Rok;Choi, Han Gil
Korean Journal of Environment and Ecology
/
v.30
no.6
/
pp.1009-1021
/
2016
The community structure and abundance of epilithic biofilm were bimonthly examined to know spatial and temporal patterns of biofilm biomass and taxonimical composition at the two study sites, Gosapo and Gyeokpo with different degrees of wave exposure levels from November 2010 to September 2011. Biomass was estimated by using chlorophyll a contents (Chl a), normalized difference vegetation index (NDVI), and vegetation index (VI). Cyanobacteria such as Aphanotece spp. predominated in the proportion of 57.53% at Gosapo and of 61.12% at Gyeokpo and they are abundant in mid shore and in summer at both study sites. The diatoms Navicula spp., Achnanthes spp. and Licmophora spp. were common species and they showed an increasing trend from high to low shore. NDVI, VI, and chl a contents were the greatest at mid shore for Gosapo (0.44, 3.05, $24.56{\mu}g/cm^2$) and at low shore for Gyeokpo (0.41, 2.73, $17.98{\mu}g/cm^2$). NDVI, VI, and chl a content were all maximal in January and minimal in March at the both sites. Average NDVI, VI, and chlorophyll a contents of biofilms were greater at Gosapo (0.43, 2.89, $22.84{\mu}g/cm^2$) than Gyeokpo (0.38, 2.48, $15.48{\mu}g/cm^2$).Of three shore levels(high, mid, and low) Chl a contents were positively correlated with NDVI and VI at the two study sites indicating that non-destructive NDVI and VI values can be used in stead of destructive Chl a extraction method. In conclusion, epilithic biofilm was more abundant seasonally in winter, vertically in mid and low intertidal zone, and horizontally at wave exposed shore than in summer, at high and sheltered shore in Korea.
Recently Unmanned Aerial Vehicle (UAV) technology offers new opportunities for assessing crop growth condition using UAV imagery. The objective of this study was to select optimal vegetation indices and regression model for estimating of rice growth using UAV images. This study was conducted using a fixed-wing UAV (Model : Ebee) with Cannon S110 and Cannon IXUS camera during farming season in 2016 on the experiment field of National Institute of Crop Science. Before heading stage of rice, there were strong relationships between rice growth parameters (plant height, dry weight and LAI (Leaf Area Index)) and NDVI (Normalized Difference Vegetation Index) using natural exponential function ($R{\geq}0.97$). After heading stage, there were strong relationships between rice dry weight and NDVI, gNDVI (green NDVI), RVI (Ratio Vegetation Index), CI-G (Chlorophyll Index-Green) using quadratic function ($R{\leq}-0.98$). There were no apparent relationships between rice growth parameters and vegetation indices using only Red-Green-Blue band images.
A field experiment was conducted to selection of ground-based remote sensor and reflectance indices to estimate rice production, estimation of suitable season for ground-based remote sensor and N top dressing fertilizer application rate in 2010. Fertilizer application was determined by "Fertilizer management standard for crops" (National Academy of Agricultural Science, 2006). Four levels of N-fertilizer were applied as 0%, 70%, 100% and 130% by base N-fertilizer application and were fertilized as 70% of basal dressing and 30% as top dressing. Rice (Oryza sativa L.) of Chucheong and Joonam (Korean cultivar) were planted on May 22, 2010 in sandy loam soil and harvested on October 6, 2010. Reflectance indices were measured 7 times from July 5 to August 23 by Crop circle-amber and red version and GreenSeeker-green and red version. Remote sensing angle from the sensor head to the canopy of rice was adjusted to $45^{\circ}$, $70^{\circ}$ and $90^{\circ}$ degree because of difference in the density of plant and the sensing angle. The reflectance indices obtained ground-based remote sensor were correlated with the biomass of rice at the early growth stage and at the harvest with $70^{\circ}$ and $90^{\circ}$ degree of sensor angle. The reflectance indices at the 52th Day After Transplanting (DAT) and the 59th DAT, critical season, were positively correlated with dry weight and nitrogen uptake. Specially NDVI at the 59th was significantly correlated with the mentioned parameters. Based on the result of this study, rNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Chucheong and rNDVI by Crop Circle on $70^{\circ}$ degree of angle and gNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Joonam can be useful for estimation of dry weight and nitrogen uptake. Moreover, sufficiency index estimated by reflectance index at the 59th DAT can be useful for the estimation of N-fertilizer level application and can be used as a model for N-top dressing fertilizer management.
Lee, Jihye;Kang, Sinkyu;Jang, Keunchang;Hong, Suk Young
Korean Journal of Remote Sensing
/
v.31
no.2
/
pp.149-160
/
2015
A comparative study was conducted for alternative consecutive procedures of detection of cloud-contaminated pixels and gap-filling and smoothing of time-series data to produce high-quality gapless satellite vegetation index (i.e. Normalized Difference Vegetation Index, NDVI). Performances of five alternative methods for detecting cloud contaminations were tested with ground-observed cloudiness data. The data gap was filled with a simple linear interpolation and then, it was applied two alternative smoothing methods (i.e. Savitzky-Golay and Wavelet transform). Moderate resolution imaging spectroradiometer (MODIS) data were used in this study. Among the alternative cloud detection methods, a criterion of MODIS Band 3 reflectance over 10% showed best accuracy with an agreement rate of 85%, which was followed by criteria of MODIS Quality assessment (82%) and Band 3 reflectance over 20% (81%), respectively. In smoothing process, the Savitzky-Golay filter was better performed to retain original NDVI patterns than the wavelet transform. This study demonstrated an operational framework of gapdetection, filling, and smoothing to produce high-quality satellite vegetation index.
Unmanned aerial vehicles (UAVs) became popular platforms for the collection of remotely sensed data in the last years. This study deals with the monitoring of multi-temporal onion growth with very high resolution by means of low-cost equipment. The concept of the monitoring was estimation of multi-temporal onion growth using normalized difference vegetation index (NDVI) and meteorological factors. For this study, UAV imagery was taken on the Changnyeong, Hapcheon and Muan regions eight times from early February to late June during the onion growing season. In precision agriculture frequent remote sensing on such scales during the vegetation period provided important spatial information on the crop status. Meanwhile, four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.) and fresh weight (F.W.) were measured for about three hundred plants (twenty plants per plot) for each field campaign. Three meteorological factors included average temperature, rainfall and irradiation over an entire onion growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 88% and 68% of the P.H. and F.W. with a root mean square error (RMSE) of 7.29 cm and 59.47 g, respectively. And $NDVI_{UAV}$ in the model explain 43% of the L.N. with a RMSE of 0.96. These lead to the result that the characteristics of variations in onion growth according to $NDVI_{UAV}$ and other meteorological factors were well reflected in the model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.