DOI QR코드

DOI QR Code

A comparative study for reconstructing a high-quality NDVI time series data derived from MODIS surface reflectance

MODIS 지표 분광반사도 자료를 이용한 고품질 NDVI 시계열 자료 생성의 기법 비교 연구

  • Lee, Jihye (Department of Environmental Science, Kangwon National University) ;
  • Kang, Sinkyu (Department of Environmental Science, Kangwon National University) ;
  • Jang, Keunchang (Department of Agriculture Environment, National Academy of Agricultural Science) ;
  • Hong, Suk Young (Department of Agriculture Environment, National Academy of Agricultural Science)
  • 이지혜 (강원대학교 환경학과) ;
  • 강신규 (강원대학교 환경학과) ;
  • 장근창 (국립농원과학원 기후변화생태과) ;
  • 홍석영 (국립농원과학원 기후변화생태과)
  • Received : 2015.03.21
  • Accepted : 2015.04.17
  • Published : 2015.04.30

Abstract

A comparative study was conducted for alternative consecutive procedures of detection of cloud-contaminated pixels and gap-filling and smoothing of time-series data to produce high-quality gapless satellite vegetation index (i.e. Normalized Difference Vegetation Index, NDVI). Performances of five alternative methods for detecting cloud contaminations were tested with ground-observed cloudiness data. The data gap was filled with a simple linear interpolation and then, it was applied two alternative smoothing methods (i.e. Savitzky-Golay and Wavelet transform). Moderate resolution imaging spectroradiometer (MODIS) data were used in this study. Among the alternative cloud detection methods, a criterion of MODIS Band 3 reflectance over 10% showed best accuracy with an agreement rate of 85%, which was followed by criteria of MODIS Quality assessment (82%) and Band 3 reflectance over 20% (81%), respectively. In smoothing process, the Savitzky-Golay filter was better performed to retain original NDVI patterns than the wavelet transform. This study demonstrated an operational framework of gapdetection, filling, and smoothing to produce high-quality satellite vegetation index.

원격탐사 자료 기반의 식생지수 시계열 자료를 이용함에 있어서 가장 중요한 것은 구름이나 에어로졸에 의한 자료의 품질저하 문제이다. 이 연구에서는 MODIS09 지표 분광반사도 자료를 이용하여 구름영향에 의한 저품질 자료를 제거한 뒤 결손자료를 내삽, 평활하여 연속적인 Normalized Difference Vegetation Index (NDVI) 시계열 자료를 생산하였다. 구름에 의한 영향을 제거하기 위한 방법으로 MODIS 분광반사도 자료를 이용한 5가지의 구름탐지기법을 선정하여 비교, 평가하였다. 위성자료에서 제공하는 품질관리정보 (Quality Assessment, QA)에서 구름이라고 판단한 경우, MODIS09 Band 3 반사도가 10% 이상인 경우와 20% 이상인 경우, Cloud Detection Index (CDI)가 임계값 이상인 경우, 센서 천정각이 $32.25^{\circ}$ 이상인 경우를 각각 구름으로 판단하였다. 구름탐지로 인해 발생한 자료의 결손은 선형적 내삽 기법을 이용하여 보정한 뒤 Savitzky-Golay (S-G) 필터와 웨이브렛 변환을 각각 적용하여 평활하였다. 구름 탐지 기법은 10% 이상 Band 3 반사도 제거 기법(85%), Quality Control (QC) (82%), 20% 이상 Band 3 반사도 제거 기법(81%)의 순으로 높은 구름탐지율을 보였다. 웨이브렛 변환은 선형의 시계열 패턴을 얻을 수 있지만 원 자료의 최대값을 반영하지 못하는 반면 S-G 필터는 구름에 의한 신뢰도 낮은 값은 제거하면서도 NDVI 원 자료의 최대값을 유지하여 시계열 자료의 계절적 특성을 잘 보여주는 것을 확인하였다. 이 연구에서는 구름의 탐지, 결손 내삽, 평활 기법의 순차적인 자료처리기법을 적용하여 구름 영향을 제거한 고품질의 시계열 자료의 생산이 가능함을 확인하였다.

Keywords

References

  1. Cha, S., D. Seo, and C. Park, 2009. Monitoring Vegetation Phenology Using MODIS in Northern Plateau Region, North Korea, Korean Journal of Remote Sensing, 25(5): 399-409. https://doi.org/10.7780/kjrs.2009.25.5.399
  2. Chen, J., P. Jonsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh, 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter, Remote Sensing of Environment, 91(3): 332-344. https://doi.org/10.1016/j.rse.2004.03.014
  3. Do, N., S. Kang, S. Myeong, T. Chun, J. Lee, and C. Lee, 2012. The estimation of gross primary productivity over North Korea using MODIS FPAR and WRF meteorological data, Korean Journal of Remote Sensing, 28(2): 215-226. https://doi.org/10.7780/kjrs.2012.28.2.215
  4. Galford, G.L., J.F. Mustard, J. Melillo, A. Gendrin, C.C. Cerri, and C.E. Cerri, 2008. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil, Remote Sensing of Environment, 112(2): 576-587. https://doi.org/10.1016/j.rse.2007.05.017
  5. Jang, K., S. Kang, J. Kim, C.B. Lee, T. Kim, J. Kim, R. Hirata, and N. Saigusa, 2010. Mapping evapotranspiration using MODIS and MM5 four-dimensional data assimilation, Remote Sensing of Environment, 114(3): 657-673. https://doi.org/10.1016/j.rse.2009.11.010
  6. Jenkins, J., A. Richardson, B. Braswell, S. Ollinger, D. Hollinger, and M. Smith, 2007. Refining lightuse efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements, Agricultural and Forest Meteorology, 143(1): 64-79. https://doi.org/10.1016/j.agrformet.2006.11.008
  7. Jeong, S., K. Jang, S. Hong, and S. Kang, 2011. Detection of irrigation timing and the mapping of paddy cover in Korea using MODIS images data, Korean Journal of Agricultural and Forest Meteorology, 13(2): 69-78. https://doi.org/10.5532/KJAFM.2011.13.2.069
  8. Kang, S., S.W. Running, J. Lim, M. Zhao, C. Park, and R. Loehman, 2003. A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index, Remote Sensing of Environment, 86(2): 232-242. https://doi.org/10.1016/S0034-4257(03)00103-2
  9. Kang, S., S. Running, M. Zhao, J. Kimball, and J. Glassy, 2005. Improving continuity of MODIS terrestrial photosynthesis products using an interpolation scheme for cloudy pixels, International Journal of Remote Sensing, 26(8): 1659-1676. https://doi.org/10.1080/01431160512331326693
  10. Kimball, J.S., K.C. McDonald, S.W. Running, and S.E. Frolking, 2004. Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests, Remote Sensing of Environment, 90(2): 243-258. https://doi.org/10.1016/j.rse.2004.01.002
  11. Min, Q., 2005. Impacts of aerosols and clouds on forest-atmosphere carbon exchange, Journal of Geophysical Research: Atmospheres(1984-2012), 110(D6).
  12. Quiroz, R., C. Yarleque, A. Posadas, V. Mares, and W. W. Immerzeel, 2011. Improving daily rainfall estimation from NDVI using a wavelet transform, Environmental Modelling & Software, 26(2): 201-209. https://doi.org/10.1016/j.envsoft.2010.07.006
  13. Reed, B.C., J.F. Brown, D. VanderZee, T.R. Loveland, J.W. Merchant, and D.O. Ohlen, 1994. Measuring phenological variability from satellite imagery, Journal of Vegetation Science, 5(5): 703-714. https://doi.org/10.2307/3235884
  14. Sakamoto, T., M. Yokozawa, H. Toritani, M. Shibayama, N. Ishitsuka, and H. Ohno, 2005. A crop phenology detection method using time-series MODIS data, Remote Sensing of Environment, 96(3): 366-374. https://doi.org/10.1016/j.rse.2005.03.008
  15. Song, X., Z. Liu, and Y. Zhao, 2004. Cloud detection and analysis of MODIS image, Proc. of 2004 IEEE Geoscience and Remote Sensing Society, July 14-17. 4: 2764-2767.
  16. Tan, B., J.T. Morisette, R.E. Wolfe, F. Gao, G.A. Ederer, J. Nightingale, and J.A. Pedelty, 2008. Vegetation phenology metrics derived from temporally smoothed and gap-filled MODIS data, Proc. of 2008 IEEE Geoscience and Remote Sensing Society, 3: III-593-III-596.
  17. Thenkabail, P.S., M. Schull, and H. Turral, 2005. Ganges and Indus river basin land use/land cover(LULC) and irrigated area mapping using continuous streams of MODIS data, Remote Sensing of Environment, 95(3): 317-341. https://doi.org/10.1016/j.rse.2004.12.018
  18. Vermote, E., S. Kotchenova, and J. Ray, 2008. MODIS surface reflectance user's guide, MODIS Land Surface Reflectance Science Computing Facility, version, 1.
  19. Viovy, N., O. Arino, and A. Belward, 1992. The Best Index Slope Extraction(BISE): A method for reducing noise in NDVI time-series, International Journal of Remote Sensing, 13(8): 1585-1590. https://doi.org/10.1080/01431169208904212
  20. Xiao, X., S. Boles, S. Frolking, C. Li, J.Y. Babu, W. Salas, and B. Moore III, 2006. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images, Remote Sensing of Environment, 100(1): 95-113. https://doi.org/10.1016/j.rse.2005.10.004
  21. Zhang, X., M.A. Friedl, C.B. Schaaf, A.H. Strahler, J.C. Hodges, F. Gao, B.C. Reed, and A. Huete, 2003. Monitoring vegetation phenology using MODIS, Remote Sensing of Environment, 84(3): 471-475. https://doi.org/10.1016/S0034-4257(02)00135-9

Cited by

  1. MODIS 식생지수와 임상도를 활용한 산림 식물계절 분석 vol.34, pp.2, 2015, https://doi.org/10.7780/kjrs.2018.34.2.1.9