DOI QR코드

DOI QR Code

Estimation for N Fertilizer Application Rate and Rice (Oriza sativa L.) Biomass by Ground-based Remote Sensors

지상원격탐사 센서를 활용한 벼의 질소시비수준 및 생체량 추정

  • Shim, Jae-Sig (Pocheon-city Agricultural Technology Center) ;
  • Lee, Joeng-Hwan (Department of Agricultural Chemistry Graduate School, Chungbuk National University) ;
  • Shin, Su-Jung (Department of Agricultural Chemistry Graduate School, Chungbuk National University) ;
  • Hong, Soon-Dal (Department of Agricultural Chemistry Graduate School, Chungbuk National University)
  • Received : 2012.08.01
  • Accepted : 2012.10.12
  • Published : 2012.10.30

Abstract

A field experiment was conducted to selection of ground-based remote sensor and reflectance indices to estimate rice production, estimation of suitable season for ground-based remote sensor and N top dressing fertilizer application rate in 2010. Fertilizer application was determined by "Fertilizer management standard for crops" (National Academy of Agricultural Science, 2006). Four levels of N-fertilizer were applied as 0%, 70%, 100% and 130% by base N-fertilizer application and were fertilized as 70% of basal dressing and 30% as top dressing. Rice (Oryza sativa L.) of Chucheong and Joonam (Korean cultivar) were planted on May 22, 2010 in sandy loam soil and harvested on October 6, 2010. Reflectance indices were measured 7 times from July 5 to August 23 by Crop circle-amber and red version and GreenSeeker-green and red version. Remote sensing angle from the sensor head to the canopy of rice was adjusted to $45^{\circ}$, $70^{\circ}$ and $90^{\circ}$ degree because of difference in the density of plant and the sensing angle. The reflectance indices obtained ground-based remote sensor were correlated with the biomass of rice at the early growth stage and at the harvest with $70^{\circ}$ and $90^{\circ}$ degree of sensor angle. The reflectance indices at the 52th Day After Transplanting (DAT) and the 59th DAT, critical season, were positively correlated with dry weight and nitrogen uptake. Specially NDVI at the 59th was significantly correlated with the mentioned parameters. Based on the result of this study, rNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Chucheong and rNDVI by Crop Circle on $70^{\circ}$ degree of angle and gNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Joonam can be useful for estimation of dry weight and nitrogen uptake. Moreover, sufficiency index estimated by reflectance index at the 59th DAT can be useful for the estimation of N-fertilizer level application and can be used as a model for N-top dressing fertilizer management.

본 연구는 벼 생산력을 예측할 수 있는 지상원격 측정센서 및 반사율지표를 선발하고, 이삭거름 질소 시비량 추천을 위한 원격탐사 최적 검정시기를 평가하며. 효율적 원격탐사 지표에 의한 이삭거름 질소 시비량 추천모델을 추정하고자 2010년에 포장시험이 수행되었다. 질소 시비량은 작물별 시비처방기준 (NIAST, 2006) 에 의해 결정하였고, 질소 시비수준은 기준 질소 시비량의 0%, 70%, 100% 및 130%의 4수준으로 하였으며, 밑거름으로 70%, 이삭거름으로 30%로 하여 분시하였다. 벼는 추청과 주남을 공시품종으로 하여 사양토에 5월 22일에 이앙하였고, 10월 6일에 수확하였다. 지상원격탐사 반사율 지표는 Crop Circle-amber와 red, GreenSeeker-green과 red를 이용해 7월 5일부터 8월 23일까지 7회에 걸쳐 측정하였다. 지상원격탐사 센서의 헤드와 작물 캐노피와의 형성 각도에 따라 센서가 탐지하는 식생의 밀도가 달라질 수 있다는 가정 하에 센서 헤드와 작물 캐노피의 측정 각도를 $45^{\circ}$, $70^{\circ}$$90^{\circ}$ 각도로 조정하여 반사율 지표를 측정하였다. 지상원격탐사 센서로 측정된 반사율 지표는 $70^{\circ}$$90^{\circ}$ 각도로 측정하였을 때 전반적으로 양호한 상관을 보여주었고, 생육 중반기와 수확기의 벼 지상부 건물중과 유의성 있는 상관을 보였다. 결정적 생육시기 (critical season)인 52일째와 59일째 측정된 반사율 지표는 벼의 지상부 건물중, 질소 흡수량과 밀접한 상관을 보여주었으며, 특히 이앙 후 59일째 측정한 NDVI가 고도로 밀접한 관계가 있음을 보여주었다. 이러한 결과로 추청벼는 59일째 GreenSeeker $70^{\circ}$ 각도 rNDVI가, 주남벼는 59일째 Crop Circle $45^{\circ}$ 각도 rNDVI 및 GreenSeeker $70^{\circ}$ gNDVI가 최종 수확기 벼의 지상부 건물중 및 질소 흡수량을 추정하고, 이들 지표는 충족지수로 평가하여 질소시비수준을 예측하고 이삭거름 질소시비추천모델로 활용할 수 있을 것으로 생각되었다.

Acknowledgement

Supported by : 충북대학교

References

  1. Gong, H.Y. 2007. Estimation of N-fertilizer level and production of rice (Oryza sativa L.) using ground-based remote sensor. Master Thesis, Chungbuk National University. Choeng-Ju, Korea.
  2. Hong, S.D. 2001. Evaluation of soil fertility for precision agriculture. TALS. 1(1):19-25.
  3. Hong, S.D. and J.J. Kim. 2003. Agricultural application of ground remote sensing. Korean J. Soil Sci. Fert. 36(2):92-103.
  4. Hussian, F., K.F. Bronson, Yadvinder-Singh, Bijay-Singh, and S. Peng. 2000. Use chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron. J. 92:875-879.
  5. Kang, S.S. 2007. Evaluation for biomass and nitrogen nutrition of crop by reflectance indices of ground-based remote sensors. Ph.D. Thesis, Chungbuk National University. Choeng-Ju, Korea.
  6. Kim, B.J., W.C. Park, R.K. Cho, and K.S. Ryu. 2001a. Possible use of NIR spectroscopy for soil testing. Korean J. Soil Sci. & Fert. 34(4):273-227.
  7. Kim, B.J., W.C. Park, R.K. Cho, and K.S. Ryu. 2001b. Use of NIR soil analyzer for measuring chemical properties of field soil. Korean J. Soil Sci. & Fert. 34(4):278-283.
  8. Kim, S.J. 2005. Scenario on future infrastructure of precision agriculture. TALS. 3(3):1-11.
  9. Kim, H.G., S.S. Kang, and S.D. Hong. 2009. Estimation for red pepper (Capsicum annum L.) biomass by reflectance indices with ground-based remote sensor. Korean J. Soil Sci. Fert. 42(2):79-87.
  10. Kim, J.I., H.C. Choi, K.H. Kim, J.K. Ahn, N.B. Park, D.S. Park, C.S. Kim, J.Y. Kim, and J.K. Kim. 2009. Varietal response to grain quality and palatability of cooked rice influenced by different nitrogen applications. Korean J. Crop Sci. 54(1):13-23.
  11. Lee, S.K. 2007. Effect of nitrogen fertilization on grain quality and palatability in rice cultivars. Master Thesis, Seoul National University. Seoul, Korea.
  12. NIAST. 2006. Recommendation of the amount of fertilizer for crops. RDA. Suwon, Korea.
  13. Peterson, T.A., T.M. Blackmer, D.D. Francis, and J.S. Schepers. 1993. Using a chlorophyll meter to improves N management. Nebguide G93-1171A. Coop. Ext. Serv., Univ. of Nebraska, Lincoln.
  14. Varvel, G.E., J.S. Schepers, and D.D. Francis. 1997. Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meter. Soil Sci. Soc. Am. J. 61:1233-1239. https://doi.org/10.2136/sssaj1997.03615995006100040032x
  15. Qin, W., S.A.W. Gerstl, D.W. Deering, and N.S. Goel. 2002. Characterizing leaf geometry for grass and crop canopies from hotspot observations. Remote Sens. Environ. 80:100-113. https://doi.org/10.1016/S0034-4257(01)00291-7