Estimation of Nondestructive Rice Leaf Nitrogen Content Using Ground Optical Sensors

지상광학센서를 이용한 비파괴 벼 엽 질소함량 추정

  • Kim, Yi-Hyun (National Institute of Agricultural Science and Technology(NIAST)) ;
  • Hong, Suk-Young (National Institute of Agricultural Science and Technology(NIAST))
  • 김이현 (농업과학기술원 토양관리과) ;
  • 홍석영 (농업과학기술원 토양관리과)
  • Received : 2007.09.18
  • Accepted : 2007.10.28
  • Published : 2007.12.30

Abstract

Ground-based optical sensing over the crop canopy provides information on the mass of plant body which reflects the light, as well as crop nitrogen content which is closely related to the greenness of plant leaves. This method has the merits of being non-destructive real-time based, and thus can be conveniently used for decision making on application of nitrogen fertilizers for crops standing in fields. In the present study relationships among leaf nitrogen content of rice canopy, crop growth status, and Normalized Difference Vegetation Index (NDVI) values were investigated. We measured Green normalized difference vegetation index($gNDVI=({\rho}0.80{\mu}m-{\rho}0.55{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.55{\mu}m)$) and NDVI($({\rho}0.80{\mu}m-{\rho}0.68{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.68{\mu}m)$) were measured by using two different active sensors (Greenseeker, NTech Inc. USA). The study was conducted in the years 2005-06 during the rice growing season at the experimental plots of National Institute of Agricultural Science and Technology located at Suwon, Korea. The experiments carried out with randomized complete block design with the application of four levels of nitrogen fertilizers (0, 70, 100, 130kg N/ha) and same amount of phosphorous and potassium content of the fertilizers. gNDVI and rNDVI increased as growth advanced and reached to maximum values at around early August, G(NDVI) were a decrease in values of observed with the crop maturation. gNDVI values and leaf nitrogen content were highly correlated at early July in 2005 and 2006. On the basis of this finding we attempted to estimate the leaf N contents using gNDVI data obtained in 2005 and 2006. The determination coefficients of the linear model by gNDVI in the years 2005 and 2006 were 0.88 and 0.94, respectively. The measured and estimated leaf N contents using gNDVI values showed good agreement ($R^2=0.86^{***}$). Results from this study show that gNDVI values represent a significant positive correlation with leaf N contents and can be used to estimate leaf N before the panicle formation stage. gNDVI appeared to be a very effective parameter to estimate leaf N content the rice canopy.

본 연구에서는 인공광원을 사용하는 능동형 지상광학센서(gNDVI, rNDVI)를 이용하여 질소수준 및 생육단계별 벼 식생지수변화를 알아보고, 식생지수와 벼 엽 질소함량과의 관계를 구명하여 벼 군락의 엽 질소함량을 추정하고자 하였다. 생육단계에 따른 식생지수 변화는 2005년, 2006년 모두 gNDVI, rNDVI값은 이앙기 이후 급속히 증가하다가 수잉기를 전후로 수확기에 이르기까지 감소하는 경향을 보였다. gNDVI값은 rNDVI값보다 엽 질소함량과의 상관계수가 높게 나타났고, 특히 벼 유수형성기 약 2주전에 상관계수가 높게 나타났으며, 엽 질소흡수량, 엽면적지수, 생체중, 건물중 등 다른 생육인자의 상관관계에서도 동일한 결과를 얻었다. 따라서 gNDVI와 엽 질소함량의 상호관계에서 결정계수는, 2005년과 2006년 결정계수에 각각 0.88, 0.94였고, 2년간의 전체자료에 대한 관계에서도 엽 질소함량 실측값은 추정값과 비교한 경향을 보이며 밀접한 관계를 보였다($R^2=0.86$). 이상의 결과로부터 gNDVI 식생지수는 이삭거름을 처리하기 전에 질소영양상태를 효과적으로 예측 할 수 있을 것으로 판단된다.

Keywords

References

  1. Agren, G. I. 1985. Theory for growth of plants derived from the nitrogen productivity concept. Physiologia Plantarum. 64:17-28 https://doi.org/10.1111/j.1399-3054.1985.tb01207.x
  2. Anna, P., and B. Abdou. 200I. Application of hyperspectral remote sensing for LAI estimation in precision farming. Canadian Remote Sensing Symposium
  3. Aparicio, N., Villegas, D., Casadesus, J., Araus, J. L., and C. Royo. 2000. Spectral vegetation indices as non-destructive tools for determining durum wheat yield. Agronomy. J. 92:83-91 https://doi.org/10.2134/agronj2000.92183x
  4. Barbara, J. Y., and R. E. Pettigrew-Crosby. 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra at leaf and canopy scales. Remote Sensing of Environment. 53:199-211 https://doi.org/10.1016/0034-4257(95)00135-N
  5. Baret, F., and G. Guyot. 1991. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment. 35:161-173 https://doi.org/10.1016/0034-4257(91)90009-U
  6. Best, R. G., and J. C. Harlan. 1985. Spectral estimation of greenleaf area index of oats. Remote Sensing of Environment. 17:27-36 https://doi.org/10.1016/0034-4257(85)90110-5
  7. Blackner, T. M., Schepers, J. S., Varvel, G. E, and E. A. Waltershea. 1996. Nitrogen deficiency detection using shortwave radiation from irrigated corn canopies. Agronomy. J. 88:1-5 https://doi.org/10.2134/agronj1996.00021962008800010001x
  8. Chapman, S. C., and H. J. Barreto. 1997.Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy. J. 89:557-562 https://doi.org/10.2134/agronj1997.00021962008900040004x
  9. Christensen, S., and J. Goudriaan. 1993. Deriving light interception and biomass from spectral reflectance ratio. Remote Sensing of Environment. 43:87-95 https://doi.org/10.1016/0034-4257(93)90066-7
  10. Diker, K., and W. C. Bausch. 2003.Radiometric field measurements of maize for estimating soil and plant nitrogen. Biosystems Engineering.86:411-420 https://doi.org/10.1016/j.biosystemseng.2003.08.016
  11. Flowers, M., R. Weisz, and R. Heiniger. 2003. Quantitative approaches for using color infrared photography for assessing inseason nitrogen status in winter wheat. Agronomy. J. 95:1189-1200 https://doi.org/10.2134/agronj2003.1189
  12. Gitelson, A, A., M. N. Merzlyak, and H. K. Lichtenthaler. 1996. Detection of red edge position and chlorophyll content by reflectance measurements near 700nm. J. Plant Physiol. 148:501-508 https://doi.org/10.1016/S0176-1617(96)80285-9
  13. Hinzman, L, D., Bauer, M. E, and C. S. T. Daughtry. 1986. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sensing of Environment. 19:47-61 https://doi.org/10.1016/0034-4257(86)90040-4
  14. Hong, S, Y., K. A. Sudduth., N. A. Kitchen., S. T. Drummond., H. L. Palm, and W. J. Wiebold. 2002. Estimating within-field variations in soil properties from airborne hyperspectral images. In Proc. Integrating Remote Sensing at the Global, Regional, and Local Scale(CD-ROM). November 10-15, 2002, Denver, CO.
  15. Hong, S. Y., K. A. Sudduth., N. A. Kitchen., C. W. Fraisse., H. L. Palm, and W. J. Wiebold. 2004. Comparison of remote sensing and crop growth models for estimating within-field LAI variability. Korean Journal of Remote Sensing. 20:175-188
  16. Ladha, J. K., A. Tirol-Padre., G. C. Punzalan., E. Castillo., U. Singh, and C. K. Reddy. 1998. Nondestructive estimation of shoot nitrogen in different rice genotypes. Agronomy. J. 90:33-40 https://doi.org/10.2134/agronj1998.00021962009000010007x
  17. Mae, T. 1986.Partitioning and utilization of nitrogen in rice plants. Japan Research Quality. 20:115-120
  18. National Institute of Agricultural Science and Technology. 2000. Methods of soil and crop plant analysis. National Institute of Agricultural Scienceand Technology, RDA, Suwon, Korea
  19. Norman, R. J., D. Guindo., B. R. Wells, and C. E. Wilson. 1992. Seasonal accumulation and partitioning of N_15 in rice. Soil Soc. Am. J. 56:1251-1527
  20. Peng, S., F. V. Garcia., R. C. Laza, and K. G. Cassman. 1993. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration. Agronomy. J. 85:987-990 https://doi.org/10.2134/agronj1993.00021962008500050005x
  21. Piekielek, W. P., R. H. Fox., J. D. Toth and K. E. Macneal. 1995. Use of a chlorophyll meter at the early dent stage of corn to evaluate nitrogen sufficiency. Agronomy. J. 87:403-408 https://doi.org/10.2134/agronj1995.00021962008700030003x
  22. Richardson, A. J., and C. L. Weigand. 1992. Using Spectral Vegetation Indices to Estimate Rangeland Productivity. Geocarto International. 1:63-77
  23. Ryu, C. S., M. Suguri, and M. Umeda. 2005. Estimation the nitrogen contents and the rice quality using hyperspectral remote sensing technology. European Conference of Precision Agriculture 2005, 325-330
  24. Schepers, James. S. 2001. Practical applications of remote sensing. Conference procedings of InforAg. August 7-9, Indianopolis
  25. Shanahan, J. F., J. S. Schepers., D. D. Francis., G. E. Varvel., W. W. Wilhelm., J. M. Tringe., M. K. Schlemmer, and D. J. Major. 2001. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 93:583-589 https://doi.org/10.2134/agronj2001.933583x
  26. Shoiji, S. H., H. Ando, and G. Wada. 1986. Fate of nitrogen in paddy fields and nitrogen absorption by rice plants. Japan Research Quality. 20:127-134
  27. Thomas, J. R., and H. W. Gausman. 1977. Leaf reflectance versus leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy. J. 69:799-802 https://doi.org/10.2134/agronj1977.00021962006900050017x
  28. Walburg, G., Bauer, M. E., Daughtry, C. S. T, and T. L. Iiousley. 1982. Effects of nitrogen nutrition on the growth, yield, and reflectance characteristics of corn canopies. Agronomy. J. 74:677-683 https://doi.org/10.2134/agronj1982.00021962007400040020x