• Title/Summary/Keyword: fuzzy parameters

Search Result 1,241, Processing Time 0.057 seconds

Fuzzy polynomial neural network model and its application to wastewater treatment system

  • Oh, Sung-Kwun;Choi, Jae-Ho;Ahn, Tae-Chon;Hwang, Hyung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.185-188
    • /
    • 1996
  • In this paper, a fuzzy PNN algorithm is proposed to estimate the structure and parameters of fuzzy model, using the PNN based on GMDH algorithm. New algorithm uses PNN algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the leastsquare method in order to identify the optimal consequence parameters. Both time series data for gas furnace and data for wastewater treatment process are used for the purpose of evaluating the performance of the fuzzy PNN. The results show that the proposed technique can produce the fuzzy model with higher accuracy than other works achieved previously.

  • PDF

Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems Based on Evolutionary Information Granulation (진화론적 정보 입자에 기반한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.340-342
    • /
    • 2004
  • In this paper, we introduce a new category of fuzzy inference systems baled on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of information with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

  • PDF

Design of Adaptive Fuzzy Controller to Inverted Pendulum Tracking (도립 진자의 궤적 제어를 위한 적응 제어기의 설계)

  • Min, Hyun-Ki;Ryu, Chang-Wan;Shim, Jae-Chul;Yim, Hwa-Yeoung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.519-521
    • /
    • 1999
  • An adaptive fuzzy controller is constructed from a set of fuzzy IF-THEN rules whose parameters are adjusted on-line according to some adaptation law for the purpose of controlling the plant to track a given trajectory. Adaptive fuzzy controller of this paper is designed based on the Lyapunov synthesis approach The adaptive fuzzy controller is designed through the following steps: first, construct an initial controller based on linguistic descriptions(in the form of fuzzy IF-THEN rules) about the unknown plant from human experts; then, develop an adaptation law to adjust the parameters of the fuzzy controller on-line, the adaptive fuzzy controllers are used to control the inverted pendulum to track a given trajectory.

  • PDF

Observer Based Sliding Mode Controller for Nonlinear System using Dynamic Rule Insertion

  • Seo, Ho-Joon;Kim, Dong-Sik;Seo, Sam-Jun;Park, Jang-Hyun;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.67.2-67
    • /
    • 2001
  • In the adaptive fuzzy sliding mode control, from a set of fuzzy IF-THEN rules adaptive fuzzy sliding mode control whose parameters are adjusted on-line according to some adaptation laws is constructed for the purpose of controlling the plant to track a desired trajectory. Most of the research works in nonlinear controller design using fuzzy systems consider the affine system with fixed grid-rule structure based on system state availability. The fixed grid-rule structure makes the order of the controller big unnecessarily, hence the on-line fuzzy rule structure and fuzzy observer based adaptive fuzzy sliding mode controller is proposed to solve system state availability problems. Therefore adaptive laws of fuzzy parameters ...

  • PDF

A novel Neuro Fuzzy Modeling using Gaussian Mixture Models

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Chun, Myung-Geun;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.110.1-110
    • /
    • 2002
  • We propose a novel neuro-fuzzy system based on an efficient clustering method. It is a very useful method that improves the performance of a fuzzy model with small number of fuzzy rules. The fuzzy clustering methods are studied in the wide range of fuzzy modeling. One of them, the grid partition method has problem of exponentially increasing number of rules when the dimension of input or number of membership function is linearly increased. On the other hand, the Expectation Maximization algorithm is an efficient estimation for unknown parameters of the Gaussian mixture model. Here it is noted that the parameters can be used for fuzzy clustering method. In a fuzzy modeling, it is desired that...

  • PDF

Identification of Multi-Fuzzy Model by means of HCM Clustering and Genetic Algorithms (HCM 클러스터링과 유전자 알고리즘을 이용한 다중 퍼지 모델 동정)

  • 박호성;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.370-370
    • /
    • 2000
  • In this paper, we design a Multi-Fuzzy model by means of HCM clustering and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model, HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy ate identified by genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy mode] and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

Robust Camera Calibration using TSK Fuzzy Modeling

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • Camera calibration in machine vision is the process of determining the intrinsic camera parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

Fuzzy Modeling based on FCM Clustering Algorithm (FCM 클러스터링 알고리즘에 기초한 퍼지 모델링)

  • 윤기찬;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.373-373
    • /
    • 2000
  • In this paper, we propose a fuzzy modeling algorithm which divides the input space more efficiently than convention methods by taking into consideration correlations between components of sample data. The proposed fuzzy modeling algorithm consists of two steps: coarse tuning, which determines consequent parameters approximately using FCRM clustering method, and fine tuning, which adjusts the premise and consequent parameters more precisely by gradient descent algorithm. To evaluate the performance of the proposed fuzzy mode, we use the numerical data of nonlinear function.

  • PDF

Digital Signal Processing Based on Fuzzy Rules

  • Arakawa, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1305-1308
    • /
    • 1993
  • A novel digital signal processing technique based on fuzzy rules is proposed for estimating nonstationary signals, such as image signals, contaminated with additive random noises. In this filter, fuzzy rules are utilized to set the filter parameters, taking the local characteristics of the signal into consideration. The introduction of the fuzzy rules is effective, since the rules to set the filter parameters is usually expressed ambiguously. Computer simulations verify its high performance.

  • PDF

A Self-teaming Fuzzy Logic Controller using Fuzzy Neural Network (퍼지 신경망을 이용한 자기학습 퍼지논리 제어기)

  • Lee, Woo-Young
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.211-213
    • /
    • 1993
  • In this paper, we proposed a design method of self-learning fuzzy logic controller using fuzzy neural network. The parameters of membership function in premise are modified by descent method and also consequent parameters by learning mechanism of animal conditioning theory. The proposed method is applied to pole balancing system in order to confirm the feasibility.

  • PDF