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Abstract

Camera calibration in machine vision is the process of determining the intrinsic camera parameters and the three-dimensional
(3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand,
Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary
accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In
this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The
proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge.
TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D

information. The experiments are performed to verify the proposed camera calibration.
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1. Introduction

In machine vision, it is important for the sensory system to
passively sense the three-dimensional (3-D) structure of its
surrounding environment. A common method is through dis-
parity analysis using two images and stereo vision. However,
the difficult problem in using disparity is to determine the
correspondence of features between two images. Once suffi-
cient correspondence is known, depth information of objects in
the scene can be computed by measuring the spatial disparity
of image features acquired by two calibrated cameras [1].
Therefore, Camera calibration is a preliminary step toward ma-
chine vision in order to extract metric information from 2D
image.

Camera calibration is necessary step in computer vision in
order to extract metric information from 2D images. Much
work has been done, starting in the photogrammetry commun-
ity and more recently, in computer vision and various methods
for calibrating cameras can be found from the literatures [1-4,
8-12]. However, to our knowledge, there does not exist any
calibration technique reported in the literatures which use
Takagi-Sugeno-Kang (TSK) fuzzy system and this is the topic
we will investigate in this paper. TSK fuzzy system is a very
popular fuzzy system and approximates any nonlinear function
to arbitrary accuracy with only a small number of fuzzy rules
[5]. It demonstrates not only nonlinear behavior but also trans-
parent structure. In this paper, we present a novel and simple
technique for camera calibration for machine vision using TSK
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fuzzy model. The proposed method divides the world into
some regions according to camera view and uses the clustered
3D geometric knowledge. TSK fuzzy system is employed to
estimate the camera parameters by combining partial in-
formation into complete 3D information. The rest of this paper
is organized as follows. In Section 2. we give some back-
ground including the camera calibration and TSK fuzzy
modeling. In Section 3, New camera calibration method using
TSK approach is proposed, In Section 4, experimental results
are given to show the performance of the proposed method.
Finally, the conclusion is drawn in Section 5.

2. Background

2.1 Camera Calibration

The direct linear transformation (DLT) facilitates a per-
spective transformation between two-dimensional image space
data and three-dimensional object space. The DLT combined
into a single linear model the two-dimensional affine trans-
formation from picture reader to image coordinates and the
transformation form image to three-dimensional object space
coordinates via the collinearity model. The basic projective
equations of the DLT are as follows:
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where © and v are the image coordinates or pixel



coordinates. The 11 parameters P, P,,,..., P33 can be physi-
cally interpreted in therms of the interior and exterior ori-
entation of the image, though the parameters are not strictly
equivalent to the perspective parameters of the collinearity
equations. Moreover, linear dependencies exist between the 11
parameters and a factor which is taken into account an alter-
native DLT formulation in which two orthogonality constraints
are imposed in the 11 parameter transformation.

Application of the DLT has proved popular for the restitu-
tion of non-metric photography since no a priori knowledge of
the interior orientation elements is required. In the digital
camera context, the DLT can give two advantages. Firstly, a
non-iterative, direct solution is achieved, and this offers the
fast computation. Secondly, the affine coordinate correction
implicit is quire appropriate for CCD [6].

If M is the world coordinates (X, Y;Z) and projects onto a
point m that is the pixel coordinates (u,v), we assume a
number of point correspondences
Meom, (X, Y,2);~(u,v);) between 3D world points
(X,Y,Z) and 2D image points {u,v) are given. We are re-
quired to find a camera matrix P, namely a 3 X4 matrix
such that m, = PM, ((u,v); = P(X,Y;2),). For each corre-
spondence M—m,; ((X,Y,2),~(u,v};), we can derive a re-
lationship
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where each P, is a 4-vector, the 2th row of P. Altematively,

one may choose to use only the first two equations:
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since the three equations of (3) are linearly dependent. From a
set of n point correspondences, we obtain 27 X 12 matrix
A by stacking up the equations (5) for each correspondence.
The projection matrix P is computed by solving the set of
equations AP = 0, where P is the vector containing the en-
tries of the matrix /. The algorithm for estimating P from
world to image point correspondences is given as follows [7].

(1) Linear Soltution: Compute an initial estimate of P using
a linear method

Robust Camera Calibration using TSK Fuzzy Modeling

(1.1) Normalization: Use a similarity transformation (7)) to
normalize the image points and a second similarity trans-
formation (7)) to normalize the space points.

(1.2) DLT: From the 2n <12 matrix A by stacking the
(5) generated by each correspondence. Write £, for the vector

containing the entries of the matrix P. A solution of AP=0,
subject to || Pl =1, is obtained from the unit singular vector
of A corresponding to the smallest singular value.

(2) Minimize geometric error: Using the linear estimate as
a  starting point minimize the  geometric  error

> d(T(uw), PUX, Y, 2),).

(3) Denormalization: The camera matrix for the original co-
ordinates is obtained from P as P= T 'PU.

2.2 TSK Fuzzy Modeling

The fuzzy model suggested by Takagi and Sugeno in 1985
can represent or model a general class of static or dynamic
nonlinear system. It is based on fuzzy partition of input space
and it can be viewed as the expansion of piecewise linear
partition. It is constructed from the following rules:

IFz,is Cl and...andz, is C!
THEN yf = f(1,892,5¢") )
:cé-%-cllml +...+clnzn

for [ =1,2,..,M, where M is the number of rules, Cl-l is the

fuzzy set and ¢ is the parameter set in the consequent. That
is, the IF parts of the rules are the same as in the ordinary
fuzzy IF_THEN rules, but the THEN parts are linear combina-
tions of the input variables.

The predicted output of the fuzzy model is computed as

the weighted average of the yls in (8), that is

M M
Zylwl E(Cé+cllml+...+cilmn)wl
—_1=1 1=1
iy - 8)

7]
Zwl Ewl
=1 =1

where yl is the output of the [th rule, w' is the [th rule's fir-
ing strength, which is obtained as the minimum of the fuzzy
membership degrees of all fuzzy variables.

The physical meaning of the rule (7) is that when is con-
strained to the fuzzy range characterized by the IF part of the
rule, the output is a linear function of the input variable.
Therefore, the TSK fuzzy system can be viewed as a some-
what piece-wise linear function, where the change from one
piece to the other is smooth rather than abrupt [5]. In this pa-
per, the local regions divided according to camera view are
constrained to the fuzzy range and complete 3D information is
achieved by combining of the partial information. The detailed
algorithms are introduced in the following section.

i
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3. TSK Approach to Camera Calibration

The camera model that we consider is the perspective pro-
jection model based on the pinhole model. If A7 has world
coordinates (X, Y;Z) and projects onto a point 7 that has
pixel coordinates (u,v), the operation can be described, in
homogeneous coordinates, by the following equation:

hu
[r)=(o] ©
h
or
PlTPM
1 P3TP3 1

where matrix P is commonly refersted to as perspective pro-
jection matrix and decomposed into two matrices: P=BD

where
Rt au—au/.tan0u00
D= =10 a/sinf v,0

0{1 (11)
0 0 01

The 4 X4 matrix D represents the mapping from world
coordinates to camera coordinates and accounts for six ex-
trinsic parameters of the camera: three for the rotation R
which is normally specified by three rotation angles and three
for the translation £. the 3x4 matrix B represents the intrinsic
parameters of the camera: the scale factors o, and o, the
coordinates 1, and v, of the principal point and the angle 6
between the image axes. The benefit from this would be that
the calibration accuracy will not only be increased, but this
will also allow us to maintain the simple relation in (7) thus
making following vision tasks easier [8].

In this paper, the proposed method divides the world into
some regions according to camera view as shown in Fig. 1
and TSK fuzzy system is employed to combine the partial
perspective projection matrices in clustered regions.

N
Clursted Region

Field of View

Fig. 1. The clustered regions

The TSK fuzzy model is composed of the following rules
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R':[F ais IC' THENy' = P'z?

R?*: IF qis IC* THEN y* = P’x® 12)

RY:IF ais IC' THEN = P'z!

where ! is the numerical order of cluster regions, R' denotes
the fuzzy rule, a is an angle of the cluster region, o' is the
partial image point, &' is the input linguistic variables to rep-
resent the world coordinates 3D point which belong to the
I-cut of JC' and P' is the Ith clustered perspective projection
matrix which is computed in the Ith clustered region. Shown
in Fig. 2. are the membership function of IC".

l 8 54 %

126 152

Fig. 2. The membership function

From the fuzzy model (12), we can compute the complete
image point, y, which combines partial 3D information is

computed by the weighted average of the y' defined as fol-
low: '

M M
Yt Y P!
- =1 =1
S TR T (a3)

S D

=1 =1

where mi

is the input linguistic variables to represent the
world coordinates 3D point, P' is the Ith clustered per-
spective projection matrix which is computed in the Ith clus-

tered region and ¢' is the partial image point using 7.

4. Experimental Result

Bxperiments are conducted using the calibration patterns as
shown in Fig. 3. The images (640 x 480) are obtained in five
clustered region and consist of a box patch, with size 500mm
X 500mm.

Table 1 and Fig. 4 show the perspective projection error of
the proposed method. The error, root mean squared calibration
error (RMSE), measures have been computed using the pro-
posed method and by conventional direct linear transform
(DLT) calibration algorithm [7] and test point pairs are not in-
cluded in calibration procedure. It can be seen from this table
that proposed method is better than the conventional calibra-
tion technique.



Fig. 3. The calibration patterns

Table 1. Perspective projection error (pixel)

Measure Proposed DLT

RMSE 3.0759 4.8201

Perspectne grojection encr
8 T T

RMSE

proposed DLT

Fig. 4. Perspective projection error (pixel)

Table 2. Calibration error in reconstruction 3D points (cm)

Measure Proposed DLT

RMSE 1.9591 5.3177

Calibration error in reconstruction 3D paints
T

RMSE

proposed DLT

Fig. 5. Calibration error in reconstruction 3D points (cm)
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Generally, with real images, the accuracy of the calibration
is measured in terms of the accuracy in reconstruction 3D
points through triangulation [9]. Clearly, the measure shown in
Table 2 and Fig. 5 is in favor of the proposed method.

5. Conclusion

Camera calibration is necessary step in computer vision in
order to extract metric information from 2D images. It is pro-
cedure of determining the internal camera geometric and opti-
cal characteristics and the 3D position and orientation of the
camera frame relative to a certain world coordinate system.
Much work has been done, starting in the photogrammetry
community and more recently, in computer vision. In this pa-
per, we propose novel and simple technique for camera cali-
bration using TSK fuzzy model and describe its efficiency.
There does not exist any calibration technique reported in the
literatures which use TSK fuzzy system and this is the topic
we will investigate in this paper. The proposed method divides
the world into some regions according to camera view and
TSK fuzzy system is employed to combine the partial per-
spective projection matrices in clustered regions. The ex-
perimental result shows that the efficiency of the proposed
method.
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