• Title/Summary/Keyword: fuzzy mathematics

Search Result 1,315, Processing Time 0.024 seconds

RC structural system control subjected to earthquakes and TMD

  • Jenchung Shao;M. Nasir Noor;P. Ken;Chuho Chang;R. Wang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.213-223
    • /
    • 2024
  • This paper proposes a composite design of fuzzy adaptive control scheme based on TMD RC structural system and the gain of two-dimensional fuzzy control is controlled by parameters. Monitoring and learning in LMI then produces performance indicators with a weighting matrix as a function of cost. It allows to control the trade-off between the two efficiencies by adjusting the appropriate weighting matrix. The two-dimensional Boost control model is equivalent to the LMI-constrained multi-objective optimization problem under dual performance criteria. By using the proposed intelligent control model, the fuzzy nonlinear criterion is satisfied. Therefore, the data connection can be further extended. Evaluation of controller performance the proposed controller is compared with other control techniques. This ensures good performance of the control routines used for position and trajectory control in the presence of model uncertainties and external influences. Quantitative verification of the effectiveness of monitoring and control. The purpose of this article is to ensure access to adequate, safe and affordable housing and basic services. Therefore, it is assumed that this goal will be achieved in the near future through the continuous development of artificial intelligence and control theory.

INTERVAL-VALUED SMOOTH TOPOLOGICAL SPACES

  • Choi, Jeong-Yeol;Kim, So-Ra;Hur, Kul
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.711-738
    • /
    • 2010
  • We list two kinds of gradation of openness and we study in the sense of the followings: (i) We give the definition of IVGO of fuzzy sets and obtain some basic results. (ii) We give the definition of interval-valued gradation of clopeness and obtain some properties. (iii) We give the definition of a subspace of an interval-valued smooth topological space and obtain some properties. (iv) We investigate some properties of gradation preserving (in short, IVGP) mappings.

A Didactic Comparision between basic concept of the theory of Crisp Set and the theory of Fuzzy Set (보통집합과 퍼지집합의 교수학적 비교연구)

  • Ghil, Byung Moon
    • Journal of the Korean School Mathematics Society
    • /
    • v.3 no.1
    • /
    • pp.211-217
    • /
    • 2000
  • 본 논문의 목적은 G. Cantor 에 의하여 출발된 집합론을 보통집합 이론이라고 구별하여 부를 때, 보통 집합 이론이 그 바탕에 깔고 있는 논리적 제한 점들 곧, 배중률이라든지 모순의 법칙 등을 어떻게 보완할 수 있을 것인가\ulcorner 하는 점과 그러한 점을 보완하여야 할 필요성에 대하여도 생각하고자 한다. 그런 관점에서 보통집합 이론과 퍼지집합 이론의 기본개념을 상호 비교함으로써 앞서 제기한 문제의 보완 요소를 찾아보려고 한다. 실제에 있어 인간의 사고 가운데에서는 중간을 배제하는 일이 없음에도 불구하고 이를 수학적으로 접근하고 표현하는 수단이 부족함으로 인하여 부자연스러운 논리의 법칙을 받아들일 수밖에 없었던 것도 사실이다. 특히, 논리적 응용력이 부족한 중등과정의 학생들에게 있어서 수학이 전적으로 2가 논리에 의하여 지배되고 있다는 방식으로만 지도하는 것은 여러 가지 측면에서 그 내용의 보완이 요구된다. 보다 다양한 수학적 표현의 여지를 열어주는 지도법은 쉼없이 연구되어야 할 것이다. 무엇보다도 배우는 학생들이 보다 폭 넓은 사고의 영역을 소유하고, 그를 바탕으로 창의적이고 자유로운 발상이 이어 질 수 있도록 하기 위하여는 교사의 수학적 시야가 보다 넓고 유연해져야 한다함은 재론할 필요가 없을 것이다. 그런 의미에서 본 논문이 작은 역할을 할 수 있기를 바란다.

  • PDF

Ordinary Smooth Topological Spaces

  • Lim, Pyung-Ki;Ryoo, Byeong-Guk;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.66-76
    • /
    • 2012
  • In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace.

STRUCTURES OF IDEMPOTENT MATRICES OVER CHAIN SEMIRINGS

  • Kang, Kyung-Tae;Song, Seok-Zun;Yang, Young-Oh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.721-729
    • /
    • 2007
  • In this paper, we have characterizations of idempotent matrices over general Boolean algebras and chain semirings. As a consequence, we obtain that a fuzzy matrix $A=[a_{i,j}]$ is idempotent if and only if all $a_{i,j}$-patterns of A are idempotent matrices over the binary Boolean algebra $\mathbb{B}_1={0,1}$. Furthermore, it turns out that a binary Boolean matrix is idempotent if and only if it can be represented as a sum of line parts and rectangle parts of the matrix.

The concept of σ-morphism as a probability measure on the set of effects (이펙트 집합에서 확률측도로서 시그마 모르피즘 개념)

  • Yun, Yong-Sik;Kang, Kyoung-Hun;Park, Jin-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.371-374
    • /
    • 2009
  • In this paper, we introduce the concepts of effects and observable as generalizations of event and random variable, respectively. Also, we introduce the concept of $\sigma$-morphism and we investigate some results on $\sigma$-morphism as a probability measure on the set of effects.

L-pre-separation axioms in (2, L)-topologies based on complete residuated lattice-valued logic

  • Zeyada, Fathei M.;Abd-Allahand, M. Azab;Mousa, A.K.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.115-127
    • /
    • 2009
  • In the present paper we introduce and study L-pre-$T_0$-, L-pre-$T_1$-, L-pre-$T_2$ (L-pre-Hausdorff)-, L-pre-$T_3$ (L-pre-regularity)-, L-pre-$T_4$ (L-pre-normality)-, L-pre-strong-$T_3$-, L-pre-strong-$T_4$-, L-pre-$R_0$-, L-pre-$R_1$-separation axioms in (2, L)-topologies where L is a complete residuated lattice.Sometimes we need more conditions on L such as the completely distributive law or that the "$\bigwedge$" is distributive over arbitrary joins or the double negation law as we illustrate through this paper. As applications of our work the corresponding results(see[1,2]) are generalized and new consequences are obtained.

Closure, Interior and Compactness in Ordinary Smooth Topological Spaces

  • Lee, Jeong Gon;Hur, Kul;Lim, Pyung Ki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.231-239
    • /
    • 2014
  • It presents the concepts of ordinary smooth interior and ordinary smooth closure of an ordinary subset and their structural properties. It also introduces the notion of ordinary smooth (open) preserving mapping and addresses some their properties. In addition, it develops the notions of ordinary smooth compactness, ordinary smooth almost compactness, and ordinary near compactness and discusses them in the general framework of ordinary smooth topological spaces.

Truth function mapping (진리함수사상)

  • Park, Jin-Won;Kang, Sang-Jin;Yun, Yong-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.198-202
    • /
    • 2006
  • In this paper, we introduce Baldwin's approximate reasoning with fuzzy logic and some truth function mappings usually used in Baldwin's method. And we introduce some assessment criteria for approximate reasonings and we define some truth function mappings which satisfy more criteria than those which are already known.

FUNDAMENTALS OF VAGUE GROUPS

  • OH, JU-MOK
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.769-783
    • /
    • 2021
  • Demirci ((1999) Vague groups. J. Math. Anal. Appl. 230, 142-156) introduced the concept of vague groups as one of uncertain reasoning structures where indistinguishable operators separate points. In this paper, we consider vague groups in which an indistinguishable operator does not need to separate points because it seems more appropriate to handle ambiguous situations. For our purposes we generalize or redefine some notions such as: vague closed subset, vague subgroup, vague kernel and vague injectiveness. Consequently we generalize most of the known results and obtain some new additional fundamental properties of vague groups, some of which are similar to ones of ordinary groups.