DOI QR코드

DOI QR Code

INTERVAL-VALUED SMOOTH TOPOLOGICAL SPACES

  • Choi, Jeong-Yeol (Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University) ;
  • Kim, So-Ra (Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University) ;
  • Hur, Kul (Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University)
  • Received : 2010.06.08
  • Accepted : 2010.11.22
  • Published : 2010.12.25

Abstract

We list two kinds of gradation of openness and we study in the sense of the followings: (i) We give the definition of IVGO of fuzzy sets and obtain some basic results. (ii) We give the definition of interval-valued gradation of clopeness and obtain some properties. (iii) We give the definition of a subspace of an interval-valued smooth topological space and obtain some properties. (iv) We investigate some properties of gradation preserving (in short, IVGP) mappings.

Keywords

References

  1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986) 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. K. Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61(2)(1993) 131-142.
  3. K. Atanassov and G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31(3)(1989) 343-349. https://doi.org/10.1016/0165-0114(89)90205-4
  4. P. Burillo and H. Bustince, Two operators on interval-valued intu- itionistic fuzzy sets: Part II, C.R. Acad. Bulg. Sci. 48(1)(1995) 17-20.
  5. H. Bustince and P. Burillo, Correlation of interval-valued intuition- istic fuzzy sets, Fuzzy Sets and Systems 74(1995) 237-244. https://doi.org/10.1016/0165-0114(94)00343-6
  6. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968) 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
  7. K.C. Chattopadhyay, R.N. Hazra and S.K. Samanta, Gradation of openness:fuzzy topology, Fuzzy Sets and Systems 49(1992) 237-242. https://doi.org/10.1016/0165-0114(92)90329-3
  8. D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88(1997) 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0
  9. V. Gregori and A.Vidal, Gradation of openness and Chang's fuzzy topologies, Fuzzy Sets and systems 109(2000) 233-244. https://doi.org/10.1016/S0165-0114(98)00089-X
  10. R.N. Hazra and S.K. Samanta, K.C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45(1992)79-82. https://doi.org/10.1016/0165-0114(92)90093-J
  11. K.Hur, Y.B.Kim and J.H.Ryou, Intuitionistic fuzzy topological groups, Honam Math. J. 26(2)(2004) 163-192.
  12. K.Hur, J.H.Kim and J.H.Ryou, Intuitionistic fuzzy topological spaces, J.Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 11(3)(2004) 243- 265.
  13. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56(1976), 621-623. https://doi.org/10.1016/0022-247X(76)90029-9
  14. T.K.Modal and S.K.Samanta, On intuitionistic gradation of open- ness, Fuzzy Sets and Systems 131(2002) 323-336. https://doi.org/10.1016/S0165-0114(01)00235-4
  15. S.K. Samanta and T.K. Mondal, Intuitionistic gradation of open- ness: intuitionistic fuzzy topology, Busefal 73(1997) 8-17.
  16. S.K. Samanta and T.K. Mondal, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30(1)(1999) 23-38.
  17. S.K. Samanta and T.K. Mondal, Topology of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 119(2001) 483-494. https://doi.org/10.1016/S0165-0114(98)00436-9
  18. A. Sostak, On a fuzzy topological structure, Rend. Circ. Mat. Palermo:Suppl. Ser. II(1985) 89-103.
  19. L.A. Zadeh, Fuzzy sets, Inform. and Control 8(1965) 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  20. L.A. Zadeh, The concept of a linguistic variable and its application to approx- imate reasoning I, Inform. Sci. 8(1975) 199-249. https://doi.org/10.1016/0020-0255(75)90036-5

Cited by

  1. Interval-Valued Fuzzy Ideals of a Ring vol.12, pp.3, 2012, https://doi.org/10.5391/IJFIS.2012.12.3.198
  2. INTERVAL-VALUED FUZZY GROUP CONGRUENCES vol.38, pp.2, 2016, https://doi.org/10.5831/HMJ.2016.38.2.403
  3. THE LATTICE OF INTERVAL-VALUED FUZZY IDEALS OF A RING vol.34, pp.3, 2012, https://doi.org/10.5831/HMJ.2012.34.3.351
  4. Interval-Valued Fuzzy Cosets vol.22, pp.5, 2012, https://doi.org/10.5391/JKIIS.2012.22.5.646
  5. Interval-valued Fuzzy Quasi-ideals in a Semigroups vol.12, pp.3, 2012, https://doi.org/10.5391/IJFIS.2012.12.3.215
  6. INTERVAL-VALUED FUZZY SUBGROUPS AND LEVEL SUBGROUPS vol.35, pp.3, 2013, https://doi.org/10.5831/HMJ.2013.35.3.525
  7. ON INTERVAL-VALUED FUZZY LATTICES vol.37, pp.2, 2015, https://doi.org/10.5831/HMJ.2015.37.2.187
  8. Interval-Valued Fuzzy Congruences on a Semigroup vol.13, pp.3, 2013, https://doi.org/10.5391/IJFIS.2013.13.3.231
  9. Lattices of Interval-Valued Fuzzy Subgroups vol.14, pp.2, 2014, https://doi.org/10.5391/IJFIS.2014.14.2.154
  10. Ω-INTERVAL-VALUED FUZZY SUBSEMIGROUPS IN A SEMIGROUP vol.37, pp.1, 2015, https://doi.org/10.5831/HMJ.2015.37.1.29
  11. INTERVAL-VALUED FUZZY GENERALIZED BI-IDEALS OF A SEMIGROUP vol.33, pp.4, 2011, https://doi.org/10.5831/HMJ.2011.33.4.603
  12. INTERVAL-VALUED FUZZY SUBGROUPS vol.35, pp.4, 2013, https://doi.org/10.5831/HMJ.2013.35.4.565
  13. Interval-valued Fuzzy Ideals and Bi-ideals of a Semigroup vol.11, pp.4, 2011, https://doi.org/10.5391/IJFIS.2011.11.4.259
  14. Interval-valued Fuzzy Normal Subgroups vol.12, pp.3, 2012, https://doi.org/10.5391/IJFIS.2012.12.3.205
  15. INTERVAL-VALUED FUZZY SUBGROUPS AND HOMOMORPHISMS vol.33, pp.4, 2011, https://doi.org/10.5831/HMJ.2011.33.4.499