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INTERVAL-VALUED SMOOTH TOPOLOGICAL SPACES

Jeong Yeol Choi1, So Ra Kim2 and Kul Hur3

Abstract. We list two kinds of gradation of openness and we study
in the sense of the followings:

(i) We give the definition of IVGO of fuzzy sets and obtain some
basic results.

(ii) We give the definition of interval-valued gradation of clope-
ness and obtain some properties.

(iii) We give the definition of a subspace of an interval-valued
smooth topological space and obtain some properties.

(iv) We investigate some properties of gradation preserving (in
short, IVGP) mappings.

1. Introduction

In 1965, Zadeh [19] introduced the concept of fuzzy sets as a gener-
alization of (ordinary) subsets. Soon after, Chang [6] was the first to
introduce the notion of a fuzzy topology T on a set X by axiomatizing
a collection T of fuzzy sets in X as follows:

(i) ∅, X ∈ T,
(ii) A,B ∈ T ⇒ A ∩B ∈ T,

(iii) {Aα}α∈Γ ⊂ T ⇒
⋃

α∈Γ

Aα ∈ T,

where he reffered to each member of T as an open set.
Some authors[7,9,10,18] noted that fuzziness in it was absent, and

Šostak[18] began the study of fuzzy structures of the topological type
and called a function τ : IX → I, satisfying the following conditions:

(i) τ(∅) = τ(X) = 1,
(ii) τ(A ∩B) ≥ τ(A) ∧ τ(B), ∀A, B ∈ IX ,
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(iii) τ(
⋃

α∈Γ

Aα) ≥
∧

α∈Γ

τ(Aα), ∀{Aα}α∈Γ ⊂ IX ,

as a fuzzy topology on X. In this case, the pair (X, τ) was called a
fuzzy topological space (in short, FTS) and τ(A) was called the degree
of openness of the fuzzy set A.

On the other hand, various generalizations of the notion of fuzzy
set have been done by many authors. Zadeh[20] introduced the idea of
interval-valued fuzzy sets. Later, Atanassov[1] introduced the concept of
intuitionistic fuzzy set. Moreover, Atanassov and Gargov[2] introduced
the notion of interval-valued intuitionistic fuzzy sets as the generalization
of both interval-valued fuzzy sets and intuitionistic fuzzy sets. Some
researchers [1,2,3,4,5] have worked mainly on operators and relations
on intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets.
Çoker[8] introduced the idea of the topology of intuitionistic fuzzy sets,
and Hur et.al[11,12] investigated some properties of intuitionistic fuzzy
topological groups and intuitionistic fuzzy topological spaces. Samanta
and Mondal[16,17] introduced the definitions of the topology of interval-
valued fuzzy sets and the topology of interval-valued intuitionistic fuzzy
sets, respectively. In particular, recently, Mondal and Samanta[14,15]
introduced the notion of intuitionistic gradation of openness.

In this pater, we list two kinds of gradation of openness and we the
sense of the followings:

(i) We give the definition of IVGO of fuzzy sets and obtain some basic
results.

(ii) We give the definition of interval-valued gradation of clopeness
and obtain some properties.

(iii) We give the definition of a subspace of an interval-valued smooth
topological space and obtain some properties.

(iv) We investigate some properties of gradation preserving (In short,
IVGP) mappings.

2. Preliminaries

Throughout this paper, X will denote a nonempty set; I = [0, 1], the
closed unit interval of the real line; I0 = (0, 1]; I1 = [0, 1); IX = the set
of all fuzzy sets in X. In particular, ∅ and X denote the empty fuzzy set
and the whole fuzzy set in X defined by ∅(x) = 0 and X(x) = 1, ∀x ∈ X,
respectively. All other notations are standard notations of fuzzy set
theory. A complex mapping A = (µA, νA) : X → I × I satisfying



Interval-Valued Smooth Topological Spaces 713

the condition µA(x) + νA(x) ≤ 1, ∀x ∈ X, is called an intuitionistic
fuzzy set in X, and 0∼ and 1∼ denote the empty intuitionistic fuzzy set
and the whole intuitionistic fuzzy set in X defined by 0∼(x) = (0, 1)
and 1∼(x) = (1, 0), ∀x ∈ X, respectively. We will denote the set of
all intuitionistic fuzzy sets in X as IFS(X). Also all the notations are
standard notations of intuitionistic fuzzy set theory.

Let D(I) be the set of all closed subintervals of the unit interval I.
The elements of D(I) are generally denoted by capital letters M, N, ...,
and note that M = [ML,MU ], where ML and MU are the lower and
upper points respectively. Especially, we denote a = [a, a] for every
a ∈ (0, 1). We also note that

(i) (∀ M, N ∈ D(I))(M = N ⇔ ML = NL, MU = NU ).
(ii) (∀ M, N ∈ D(I))(M ≤ N ⇔ ML ≤ NL, MU ≤ NU ).

For every M ∈ D(I), the complement of M, denoted by M c, is defined
by M c = 1−M = [1−MU , 1−ML].

Definition 2.1[20]. Let X be a given nonempty set. A mapping
A = [AL, AU ] : X → D(I) is called an interval valued fuzzy set
(briefly, IV FS) in X, where AL and AU are fuzzy sets in X satisfy-
ing AL(x) ≤ AU (x) and A(x) = [AL(x), AU (x)] for each x ∈ X, and
AL(x) and AU (x) are called the lower and upper end points of A(x),
respectively

It is clear that every fuzzy set A in X is an IVFS of the form
A = [A,A]. For any [a, b] ∈ D(I), the IVFS whose value is the in-
terval [a, b] for all x ∈ X is denoted by ˜[a, b], i.e., ˜[a, b](x) = [a, b] for
each x ∈ X. For any a ∈ I, the IVFS whose value is a for all x ∈ X is
denoted by simply ã, i.e., ã(x) = a for each x ∈ X. 0̃ and 1̃ denote the
empty interral-valued fuzzy set and the whole interval-valued fuzzy set in
X, respectively. For a point p ∈ X and for [a, b] ∈ D(I) with b > 0, the
IVFS which takes the value [a, b] ∈ D(I) at p and 0 elsewhere in X is
called an interval-valued fuzzy point(briefly, an IVFP) and is denoted by
p[a,b]. In particular, if b = a, it is also denoted by pa. We will denote by
D(I)X and IVFP (X) the set of all IVFSS and the set of all IVF points
in X by D(I)X and IVFP (X), respectively.

Notation. Let X = {x1, x2, ..., xn}. Then A = ([a1, b1], [a2, b2], ..., [an, bn])
denotes an IVFS in X such that AL(xi) = ai and AU (xi) = bi, for all
i = 1, 2, ..., n.
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Definition 2.2[16]. Let A,B ∈ D(I)X . Then:
(a) A ⊂ B iff AL(x) ≤ BL(x) and AU (x) ≤ BU (x) for all x ∈ X.

(b) A = B iff A ⊂ B and B ⊂ A.

(c) The complement Ac of A is defined by Ac = [1−AU (x), 1−AL(x)]
for all x ∈ X.

(d) If {Aα : α ∈ Γ} is an arbitrary subset of D(I)X , then⋂
Aα(x) = [

∧

α∈Γ

AL
α(x),

∧

α∈Γ

AU
α (x) ],

⋃
Aα(x) = [

∨

α∈Γ

AL
α(x),

∨

α∈Γ

AU
α (x) ].

Definition 2.3[16]. Let T ⊂ D(I)X . Then T is called an interval-
valued fuzzy topology(in short, IV FT ) on X if it satisfies the following
conditions:

(i) 0̃, 1̃ ∈ T,

(ii) A,B ∈ T ⇒ A ∩B ∈ T,

(iii) {Aα}α∈Γ ⊂ T ⇒
⋃

α∈Γ

Aα ∈ T.

In this case, each member of T is called an IVF open set and the
pair (X,T ) is called an interval-valued fuzzy topological space(in short,
IV FTS). A ∈ D(I)X is called closed in (X, T ) if Ac ∈ T.

As in ordinary topologies, the indiscrete topology of IVF sets con-
tains only 1̃ and 0̃, while the discrete topology of IVF sets contains all
IVF sets. These two topologies are denoted by T 0 and T 1, respectively.

3. Interval-valued gradation of openness

Definition 3.1[7,18]. A mapping τ : IX → I is called a gradation of
openness (in short, GO) or a smooth topology on X if it satisfies the
following conditions:

(GO1) τ(∅) = τ(X) = 1,

(GO2) τ(A) ≥ r and τ(B) ≥ r ⇒ τ(A ∩B) ≥ r, for any A,B ∈ IX ,

(GO3) τ(Aα) ≥ r, ∀α ∈ Γ ⇒ τ(
⋃

α∈Γ

Aα) ≥ r, for any {Aα}α∈Γ ⊂ IX ,

where r ∈ I0 ; or equivalently:
(GO1)

′
τ(∅) = τ(X) = 1,

(GO2)
′
τ(A ∩B) ≥ τ(A) ∧ τ(B), for any A,B ∈ IX ,
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(GO3)
′
τ(

⋃

α∈Γ

Aα) ≥
∧

α∈Γ

τ(Aα), for any {Aα}α∈Γ ⊂ IX .

The pair (X, τ) is called a smooth topological space(in short, STS).

Definition 3.2[14]. A complex mapping τ = (µτ , ντ ) : IX → I ×
I is called an intuitionistic gradation of openness(in short, IGO) an
intuitionistic smooth topology on X if it satisfies the following conditions:

(IGO1) µτ (A) + ντ (A) ≤ 1, for each A ∈ IX ,

(IGO2) τ(∅) = τ(X) = (1, 0),
(IGO3) µτ (A∩B) ≥ µτ (A)∧ µτ (B) and ντ (A∩B) ≤ ντ (A)∨ ντ (B),

for any A,B ∈ IX ,

(IGO4) µτ (
⋃

α∈Γ

Aα) ≥
∧

α∈Γ

µτ (Aα) and ντ (
⋃

α∈Γ

Aα) ≤
∨

α∈Γ

ντ (Aα), for

any {Aα}α∈Γ ⊂ IX .

The triple (X,µτ , ντ ) is called an intuitionistic smooth topological space(in
short, ISTS), and µτ and ντ may be interpreted as gradation of open-
ness and nonopenness, respectively.

Definition 3.3. A mapping τ = [τL, τU ] : IX → D(I) is called an
interval-valued gradation of openess(in short, IV GO) or an interval-
valued smooth topology on X if it satisfies the following conditions:

(IVGO1) τL(A) ≤ τU (A), for each A ∈ IX ,

(IVGO2) τ(∅) = τ(X) =1,
(IVGO3) τL(A∩B) ≥ τL(A)∧τL(B) and τU (A∩B) ≥ τU (A)∧τU (B),

for any A,B ∈ IX ,

(IVGO4) τL(
⋃

α∈Γ

Aα) ≥
∧

α∈Γ

τL(Aα) and τU (
⋃

α∈Γ

Aα) ≥
∧

α∈Γ

τU (Aα),

for any {Aα}α∈Γ ⊂ IX .

The pair (X, τ) is called an interval-valued smooth topological space(in
short, IV STS).

We will denote the set of all GOs[resp. IGOs and IVGOs] on X as
GO(X)[resp, IGO(X) and IVGO(X)].

Example 3.3. (a) Let T be the topology on R generated by B = {(a, b] :
a, b ∈ R and a < b} as a subbase, and let To be the family of all open
sets in R with respect to (in short, w.r.t.) the usual topology on R,
where R denotes the set of all real numbers. We define the mapping
τ = [τL, τU ] : IR → D(I) as follows: For each A ∈ IX ,
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τ(A) =





1 if A ∈ To,
[0.5,0.7] if A ∈ T\To,
0 otherwise.

Then it can easily seen that τ ∈IVGO(X).
(b) Let a < b in R and let λ ∈ Io. We define the mapping A : R→ I

as follows: For each x ∈ R,

A(x) =





1 if x ∈ (a, b),
λ if x = b,
0 othewise.

Then clearly A ∈ IX and we write A = (a, b)λ. Let B = {(a, b)λ : a, b ∈
R, a < b and λ ∈ Io}, let T be the chang’s fuzzy topology generated by
B as a subbase and let To = {χo : O is an open set in R}. Any A ∈ T\To

can be expressed as
A =

⋃

α∈Γ

Aα (3.1)

where Aα = (aα, bα)λ and Γ is countable. We define the mapping τ =
[τL, τU ] : IR → D(I) as follows: For each A ∈ IX ,

τ(A) =





1 if A ∈ To,
[1-0.5λ,0.7λ] if A = (a, b)λ,

[
∧

α∈Γ

τL(Aα),
∧

α∈Γ

τU (Aα)] if A is expressed in the form (3.1),

0 otherwise.

Then we can easily see that τ ∈ IVGO(X).

The following is the immediate result of Definitions 3.1, 3.2 and 3.3.

Proposition 3.4. (a) If τ ∈GO(X), then (τ, τ c) ∈ IGO(X) and τ =
[τ, τ ] ∈ IVGO(X), where τ c(A) = 1− τ(A), ∀ A ∈ IX .

(b) If τ ∈ IGO(X) [resp. IVGO(X)], then µτ , ν
c
τ ∈GO(X) [resp.

τL, τU ∈ GO(X)].

Proposition 3.5. We define two mappings f :IVGO(X) → IGO(X)
and g :IGO(X) → IVGO(X) as follows, respectively:

f(τ) = f([τL, τU ]) = (τL, (τU )c), ∀ τ ∈ IVGO(X)
and

g(τ) = g((µτ , ντ )) = [µτ , ν
c
τ ], ∀ τ ∈ IGO(X).
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Then g ◦ f = 1IVGO(X) and f ◦ g = 1IGO(X).

Proof. It can be easily seen that f and g are functions. Let τ ∈
IVGO(X). Then

g ◦ f(τ) = g((τL, (τU )c))
= [τL, ((τU )c)c]
= [τL, τU ] = τ = 1IVGO(X)

Now let τ ∈ IGO(X). Then
f ◦ g(τ) = f([µτ , (ντ )c])
= (µτ , ((ντ )c)c)
= (µτ , ντ ) = τ = 1IGO(X).

This completes the proof.

Remark 3.5. Proposition 3.5 shows the concepts of IVGO and IGO to
be equipollent generalizations of one of GO.

Definition 3.6[7]. A mapping F : IX → I is called a gradation of
closedness(in short, GC) or a smooth cotopology on X if it satisfies the
following conditions:

(GC1) F(∅) = F(X) = 1,
(GC2) F(A) ≥ r and F(B) ≥ r ⇒ F(A∪B) ≥ r, for any A,B ∈ IX ,

(GC3) F(Aα) ≥ r, ∀ α ∈ Γ ⇒ F(
⋂

α∈Γ

Aα) ≥ r, for any {Aα} ⊂ IX ,

where r ∈ Io; or equivalently:
(GC1)

′ F(∅) = F(X) = 1,
(GC2)

′ F(A ∪B) ≥ F(A) ∩ F(B), for any A,B ∈ IX ,

(GC3)
′ F(

⋂

α∈Γ

Aα) ≥
∧

α∈Γ

F(Aα), for any {Aα}α∈Γ ⊂ IX .

Definition 3.7[14]. A complex mapping F = (µF , νF ) : IX → I × I is
called an intuitionistic gradation of closedness(in short, IGC) an intu-
itionistic smooth cotopology on X if it satisfies the following conditions:

(IGC1) µF (A) + νF (A) ≤ 1, for each A ∈ IX ,
(IGC2) F(∅) = F(X) = (1, 0),
(IGC3) µF (A∪B) ≥ µF (A)∧µF (B) and νF (A∪B) ≤ νF (A)∨νF (B),

for any A,B ∈ IX .

(IGC4) µF (
⋂

α∈Γ

Aα) ≥
∧

α∈Γ

µF (Aα) and νF (
⋂

α∈Γ

Aα) ≤
∨

α∈Γ

νF (Aα), for

any {Aα}α∈Γ ⊂ IX .
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Definition 3.8. A mapping F = [FL,FU ] : IX → D(I) is called
an interval-valued gradation of closedness(in short, IV GC) an interval-
valued smooth cotopology on X if it satisfies the following conditions:

(IVGC1) FL(A) ≤ FU (A), for each A ∈ IX ,
(IVGC2) F(∅) = F(X) = 1,
(IVGC3) FL(A ∪B) ≥ FL(A) ∧ FL(B) and FU (A ∪B) ≥ FU (A) ∧

FU (B), for any A,B ∈ IX ,

(IVGC4) FL(
⋂

α∈Γ

Aα) ≥
∧

α∈Γ

FL(Aα) and FU (
⋂

α∈Γ

Aα) ≥
∧

α∈Γ

FU (Aα),

for any {Aα}α∈Γ ⊂ IX .

We will denote the set of all GCs[resp. IGCs and IVGCs] an X as
GC(X)[resp. IGC(X) and IVGC(X)].

The following is the generalization of Propositions 2.3, 2.4 and Corol-
lary 2.5 in[7], as well as the analogue to Theorem 2.6 in[14].

Proposition 3.9. (a) For each τ ∈ IVGO(X), we define the mapping
Fτ : IX → D(I) as follows: For each A ∈ IX ,

Fτ (A) = τ(Ac).
Then Fτ ∈ IVGC(X).

(b) For each F ∈ IVGC(X), we define the mapping τF : IX → D(I)
as follows: For each A ∈ IX ,

τF (A) = F(Ac).
Then τF ∈ IVGO(X).

(c) τFτ = τ and FτF = F .

Proof. (a) It is clear that Fτ satisfies the conditions (IVGC1) and
(IVGC2). Let A, B ∈ IX . Then

FL
τ (A ∪B) = τL((A ∪B)c) = τL(Ac ∩Bc)

≥ τL(Ac) ∧ τL(Bc) [By the condition (IVGO3)]
= FL

τ (A) ∧ FL
τ (B). [By the definition of Fτ ]

Similarly, we have FU
τ (A)(A ∪B) ≥ FU

τ (A) ∧ FU
τ (B). Thus Fτ satisfies

the condition (IVGC3). Now let {Aα}α∈Γ ⊂ IX . Then
FL

τ (
⋂

α∈Γ

Aα) = τL((
⋂

α∈Γ

Aα)c) = τL(
⋃

α∈Γ

Ac
α)

≥
∧

α∈Γ

τL(Ac
α) [By the condition (IVGO4)]

=
∧

α∈Γ

FL
τ (Ac

α), [By the definition of Fτ ]
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Similarly, we have FL
τ (

⋂

α∈Γ

Aα) ≥
∧

α∈Γ

FL
τ (Aα). So Fτ satisfies the condi-

tion (IVGC4). Hence Fτ ∈ IVGC(X).
The proof of (b) is similar to one of (a) and (c) are the immediate

results of the definitions of Fτ and τF .

Definition 3.10. Let {τα}α∈Γ ⊂ IVGO(X). Then the intersection of
{τα}α∈Γ, denoted by

⋂

α∈Γ

τα, is defined as follows: For each A ∈ IX ,

(
⋂

α∈Γ

τα)(A) = [
∧

α∈Γ

τL
α (A),

∧

α∈Γ

τU
α (A)].

The following is the immediate result of Definitions 3.3 and 3.10.

Proposition 3.11. Let {τα}α∈Γ ⊂ IVGO(X). Then
⋂

α∈Γ

τα ∈ IVGO(X).

Definition 3.12. We define a relation “ ≤ ” on IVGO(X) as follows:
τ ≤ η ⇔ τL ≤ ηL and τU ≤ ηU , for any τ, η ∈ IVGO(X).

It can be easily seen that (IVGO(X),≤) is a partially ordered set.

Remark 3.13. We define two mappings τ0, τ1 : IX → D(I) as follows:
For each A ∈ IX ,

τ0(A) =
{

1 if A = ∅ or A = X,
0 if A ∈ IX\{∅, X}

and
τ1(A) = 1.

Then we can easily see that τ0, τ1 ∈ IVGO(X) and τ0 ≤ τ ≤ τ1, ∀ τ ∈
IVGO(X).

The followings is the immediate result of Proposition 3.11 and Re-
mark 3.13.

Proposition 3.14. (IVCO(X),≤) is a complete lattice with the small-
est element τ0 and the largest element τ1.

Proposition 3.15. Let (X, τ) be an IVFTS, where τ ∈ IVGO(X) and
let [λ, µ] ∈ D(I). Then

τ[λ,µ] = {A ∈ IX : τ(A) ≥ [λ, µ], i.e., τL(A) ≥ λ and τU (A) ≥ µ}
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is a Chang’s fuzzy topology on X. In this case, τ[λ,µ] [resp. τλ] is called
the [λ, µ]-level [resp. λ-level] Chang’s fuzzy topology on X w.r.t. τ .

Proof. Since τ ∈ IVGO(X), τ(∅) = τ(X) = 1. Then
τL(∅) = 1 ≥ λ, τU (∅) = 1 ≥ µ

and
τL(X) = 1 ≥ λ, τU (X) = 1 ≥ µ.

Thus ∅, X ∈ τ[λ,µ]. Let A,B ∈ τ[λ,µ]. Then
τL(A) ≥ λ, τU (A) ≥ µ

and
τL(B) ≥ λ, τU (B) ≥ µ.

Since τ ∈ IVGO(X),
τL(A ∩B) ≥ τL(A) ∧ τL(B) ≥ λ

and
τU (A ∩B) ≥ τU (A) ∧ τU (B) ≥ µ.

Thus A ∩B ∈ τ[λ,µ]. Now let {Aα}α∈Γ ⊂ τ[λ,µ]. Then
τL(Aα) ≥ λ and τU (Aα) ≥ µ, ∀ α ∈ Γ.

Since τ ∈ IVGO(X),
τL(

⋃

α∈Γ

Aα) ≥
∧

α∈Γ

τL(Aα) ≥ λ

and
τU (

⋃

α∈Γ

Aα) ≥
∧

α∈Γ

τU (Aα) ≥ µ.

Thus
⋃

α∈Γ

Aα ∈ τ[λ,µ]. So τ[λ,µ] is a Chang’s fuzzy topology on X. By

the process of the proof of τ[λ,µ], it is clear that τλ is a Chang’s fuzzy
topology on X.

Proposition 3.16. Let (X, τ) be an IVFTS and let {τ[λ,µ]}[λ,µ]∈D(I)

be the family of all [λ, µ]-level Chang’s fuzzy topologies w.r.t. τ. Then
{τ[λ,µ]}[λ,µ]∈D(I) is dscending and for each [λ, µ] ∈ D(Io), τ[λ,µ] =

⋂

[a,b]<[λ,µ]

τ[a,b].

In this case, {τ[λ,µ]}[λ,µ]∈D(Io) is called the family of Chang’s fuzzy topolo-
gies associated with the gradation of τ.

Proof. Suppose [a, b] ≤ [λ, µ]. Then clearly τ[λ,µ] ⊂ τ[a,b]. Thus {τ[λ,µ]}[λ,µ]∈D(I)

is a descending family of Chang’s fuzzy topologies. So
τ[λ,µ] ⊂

⋂

[a,b]<[λ,µ]

τ[a,b], for each [λ, µ] ∈ D(Io).
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Assume that A /∈ τ[λ,µ]. Then τL(A) < λ or τU (A) < µ. Thus ∃ [a, b] ∈
D(Io) such that τL(A) < a < λ or τU (A) < b < µ. So A /∈

⋂

[a,b]<[λ,µ]

τ[a,b].

Hence
⋂

[a,b]<[λ,µ]

τ[a,b] ⊂ τ[λ,µ]. Therefore τ[λ,µ] =
⋂

[a,b]<[λ,µ]

τ[a,b].

The following is the immediate result of Proposition 3.16.

Corollary 3.16. Let (X, τ) be an IVFTS and let {τr}r∈D(I) be the
family of all r-level Chang’s fuzzy topologies w.r.t. τ. Then {τr}r∈D(I)

is descending and for each r∈ D(Io), τr =
⋂
s<r

τs.

Proposition 3.17. Let {T[λ,µ]}[λ,µ]∈D(Io) be a nonempty descending
family of Chang’s fuzzy topologies on X. We define the mapping τ =
[τL, τU ] : IX → D(I) as follows:

τ(A) =
∨
{[λ, µ] ∈ D(Io) : A ∈ T[λ,µ]}, ∀ A ∈ IX .

Then τ ∈ IVGO(X). If, for each [a, b] ∈ D(Io),
T[λ,µ] =

⋂

[a,b]<[λ,µ]

T[a,b], (3.2)

then τ[λ,µ] = T[λ,µ] for each [λ, µ] ∈ D(Io).

Proof. Since T[λ,µ] is a Chang’s fuzzy topology on X, ∅, X ∈ T[λ,µ].
Then, by the definition of τ,

τ(∅) = τ(X) = 1.
Furthermore, τL(A) ≤ τU (A), for each A ∈ IX . Thus τ satisfies the
conditions (IVGO1) and (IVGO2).

For any Ai ∈ IX , let τ(Ai) = [ai, bi] for i = 1, 2. Suppose τ(Ai) = 0
for some i. Then clearly

τ(A1 ∩A2) ≥ τ(A1) ∧ τ(A2).
Thus, without loss of generality, suppose [ai, bi] > 0 for i = 1, 2. Let
[s, t] ≤ τ(Ai) for i = 1, 2 and let ε > 0. Then, by the definition of τ,

∃[λ1, µ1], [λ2, µ2] ∈ D(Io) such that
ai − ε < λi ≤ ai, bi − ε < µi ≤ bi and Ai ∈ T[λi,µi] for i = 1, 2.

Let [λ, µ] = [λ1, µ1]∧[λ2, µ2] and let [a, b] = [a1, b1]∧[a2, b2]. Then clearly
A1, A2 ∈ T[λ,µ]. Thus A1 ∩A2 ∈ T[λ,µ]. So

τL(A1 ∩A2) ≥ λ > a− ε > s− ε
and

τU (A1 ∩A2) ≥ µ > b− ε > t− ε.
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Since ε > 0 is arbitrary,
τL(A1 ∩A2) ≥ s and τU (A1 ∩A2) ≥ t.

Hence τ(A1, A2) ≥ [s, t], i.e., τ(A1 ∩ A2) ≥ τ(A1) ∧ τ(A2). Therefore τ
satisfies the condition (IVGO3).

Now suppose τ(Aα) = [lα,mα] for each α ∈ Γ and let [l, m] =∧

α∈Γ

[lα,mα]. Suppose [l, m] = 0. Then it is obvious that

τ(
⋃

α∈Γ

Aα) ≥
∧

α∈Γ

τ(Aα).

Suppose [l, m] > 0 and let [l, m] > ε > 0. Then 0 < l − ε < lα and
0 < m − ε < mα for each α ∈ Γ. Thus Aα ∈ T[l−ε,m−ε], ∀ α ∈ Γ. Since

T[l−ε,m−ε] is a Chang’s fuzzy topology,
⋃

α∈Γ

Aα ∈ T[l−ε,m−ε]. So

τ(
⋃

α∈Γ

Aα) ≥ [l − ε,m− ε].

Since ε > 0 is arbitrary,
τ(

⋃

α∈Γ

Aα) ≥ [l, m] =
∧

α∈Γ

τ(Aα).

Hence τ satisfies the condition (IVGO.4). Therefore τ ∈ IVGO(X).
Finally, suppose {T[λ,µ]}[λ,µ]∈D(Io) satisfies the condition (3.2) and let

A ∈ T[λ,ν]. Then clearly τ(A) ≥ [λ, µ]. Thus A ∈ τ[λ,µ]. So T[λ,µ] ⊂ τ[λ,µ].
Now let A ∈ τ[λ,µ]. Then τ(A) ≥ [λ, µ]. Thus, by the definition of τ,∨

{[a, b] ∈ D(Io) : A ∈ T[a,b]} = [s, t] ≥ [λ, µ].

Let ε > 0. Then ∃[a, b] ∈ D(Io) such that
s− ε < a, t− ε < b and A ∈ T[a,b].

Thus
λ− ε ≤ s− ε < a, µ− ε ≤ t− ε < b and A ∈ T[a,b].

So A ∈ T[λ−ε,µ−ε]. Since ε > 0 is arbitrary, by the condition (3.2),
A ∈ T[λ,µ]. Hence τ[λ,µ] ⊂ T[λ,µ]. Therefore τ[λ,µ] = T[λ,µ]. This completes
the proof.

The followings are the immediate results of Corollary 3.16 and Propo-
sition 3.17.

Corollary 3.17-1. Let τ, η ∈ IVGO(X). Then τ = η if and only if
τ[λ,µ] = η[λ,µ], ∀[λ, µ] ∈ D(Io).
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Corollary 3.17-2. Let {Tr}r∈D(Io) be a nonempty dscending family of
Chang’s fuzzy topologices on X and let τ : IX → D(I) be a mapping
defined as follows: For each A ∈ IX ,

τ(A) =
∨
{r ∈ D(Io) : A ∈ Tr}.

Then τ ∈ IVGO(X). If, for each r ∈ D(Io),
Tr =

⋂
s<r

Ts

then τr = Tr for all r ∈ D(Io).

Proposition 3.18. Let (X, T ) be a Chang’s fuzzy topological space.
For each [λ, µ] ∈ D(Io), we define a mapping T [λ,µ] : IX → D(I) as
follows: For each A ∈ IX ,

T [λ,µ](A) =





1 if A = ∅ or A = X,
[λ, µ] if A ∈ T\{∅, X},
0 otherwise.

Then T [λ,µ] ∈ IVGO(X) such that (T [λ,µ])[λ,µ] = T.

In this case, T [λ,µ] [resp. Tλ] is called a [λ, µ]-th [resp. λ-th] interval-
valued gradation [in short, IV G] an X, and (X, T [λ,µ])[resp. (X,Tλ)]
is called a [λ, µ]-th [resp. λ-th] interval-valued graded fuzzy topological
space.

Proof. By the definition of T [λ,µ], T [λ,µ]L(A) ≤ T [λ,µ]U (A), ∀ A ∈ IX .
Then (IVGO1) holds. Also, it is clear that (IVGO2) holds.

Let Ai ∈ IX , i = 1, 2. Suppose Ai = ∅ for some i. Then A1∩A2 = ∅.
Thus

T [λ,µ](A1 ∩A2) = 1 ≥ T [λ,µ](A1) ∧ T [λ,µ](A2).
Suppose Ai = X, for some i(say A1). Then A1 ∩A2 = A2. Thus

T [x,µ](A1 ∩A2) = T [λ,µ](A2) ≥ T [λ,µ](A1) ∧ T λ,µ(A2).
Suppose A1, A2 ∈ T \ {∅, X}. Then A1 ∩A2 ∈ T . Thus

T [x,µ](A1 ∩A2) ≥ [λ, µ] = T [λ,µ](A1) ∧ T [λ,µ](A2).
Suppose Ai ∈ IX − T for some i (say A1) Then T [λ,µ](A1) = 0. Thus

T [λ,µ](A1 ∩A2) ≥ 0 = T [λ,µ](A1) ∧ T [λ,µ](A2).
In all cases, T [λ,µ] satisfies the condition (IVGO3).

Let {Aα}α∈P ⊂ IX . Suppose Aα0 = ∅ for some α0 ∈ Γ. Then⋃

α∈Γ

Aα =
⋃

α∈Γ(α6=α0)

Aα.
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Thus∧

α∈Γ

T [λ,µ](Aα) =
∧

α∈Γ(α 6=α0)

T [λ,µ](Aα). [Since T λ,µ(Aα0) = 1]

So, without loss of generality, assume that Aα 6= ∅ ∀α ∈ Γ.
Suppose Aα0 = X for some α0 = Γ. Then

T [λ,µ](
⋃

α∈Γ

Aα) = T [λ,µ](X) = 1 ≥
∧

α∈Γ

T [λ,µ](Aα).

Suppose Aα ∈ T\{∅, X}∀α ∈ Γ. Then clearly (
⋃

α∈Γ

Aα ∈ T . Thus

T [λ,µ](
⋃

α∈Γ

Aα) ≥ [λ, µ] = (
∧

α∈Γ

T [λ,µ](Aα).

Suppose Aα0 ∈ IX − T for some α0 ∈ Γ. Then
T [λ,µ](

⋃

α∈Γ

Aα) ≥ 0 = T [λ,µ](Aα0) =
∧

α∈Γ

T [λ,µ](Aα).

In all cases, T [λ,µ] satisfies the condition (IVGO4). Hence T [λ,µ] ∈
IVGO(X).

By the above result and Proposition 3.15,
(T [λ,µ])[λ,µ] = {A ∈ IX : T [λ,µ](A) ≥ [λ, µ]}=T .

From the process of the above proof, it can be easily seen that the re-
mainder holds.

4. Interval-valued gradation of clopenness

Definition 4.1. A mapping τ : IX → D(I) is called an interval-valued gradation
of clopenness (in short, IVGCO) on X if τ ∈ IVGO(X)∩ IVGC(X). We
will denote the set of all IVGCOs on X as IVGCO(X). It is clear that
τ0, τ1 ∈ IVGCO(X).

Example 4.1. Let [λ, µ] ∈ D(I) be fixed. We define the mapping
τ : IX → D(I) as follows : For each A ∈ IX ,

τ(A) =
{

1 if A = ∅ or A = X,
[λ, µ] if A 6= ∅ and A 6= X.

Then it is obvious that τ ∈ IVGCO(X). In this case, τ is called an
interval-valued constant gradation and we will denote it by [λ, µ].

The following is the characterization of IVGCO.

Theorem 4.2. τ ∈ IVGCO(X) if and only if
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(i) τL(A) ≤ τU (A), ∀A ∈ IX ,
(ii) τ(∅) = τ(X) = 1,
(iii) τ(

⋂

α∈Γ

Aα) ≥
∧

α∈Γ

τ(Aα), ∀{Aα}α∈Γ ⊂ IX ,

(iv) τ(
⋃

α∈Γ

Aα) ≥
∧

α∈Γ

τ(Aα), ∀{Aα}α∈Γ ⊂ IX .

Proof. From Definitions 3.3, 3.8 and 4.1, it is obvious.

Definition 4.3. In Proposition 3.9, for each τ ∈IVGO(X), Fτ is called
an inter- val-valued conjugate gradation of τ . By Proposition 3.9(c), τ
is the interval-valued conjugate gradation of Fτ .

It is clear that if τ ∈IVGCO(X), Fτ = τ .

The following gives a nice IVGCO.

Proposition 4.4. We define the mapping σ : IX → D(I) as follows:

σ(A) =





1 if A = ∅,
[

∧

x∈supp(A)

A(x),
∧

x∈supp(A)

A(x)] if A 6= ∅,

for each A ∈ IX , where supp(A)={x ∈ X : A(x) > 0}. Then σ ∈IVGCO(X).
In this case, σ is called the interval-valued support gradation.

Proof. It is obvious that σ(∅) = σ(X) = 1 and σL(A) ≤ σU (A) for
each A ∈ IX .

Let {Aα}α∈Γ ⊂ IX , let λ = σ(
⋃

α∈Γ

Aα) and let λα = σ(Aα) ∀α ∈ Γ.

Suppose
∧

α∈Γ

λα = µ > λ and let x ∈ supp(
⋃

α∈Γ

Aα). Since supp(
⋃

α∈Γ

Aα) =

⋃

α∈Γ

supp(Aα), ∃α0 ∈ Γ such that x ∈ supp (Aα0). Thus

Aα0(x) ≥ ∧{Aα0(y) : y ∈ supp(Aα0)} = λα0 ≥ µ.
So (

⋃

α∈Γ

Aα)(x) ≥ µ and hence σ(
⋃

α∈Γ

Aα) ≥ µ. This is a contradiction

from the fact that σ(
⋃

α∈Γ

Aα) = λ < µ. Therefore σ(
⋃

α∈Γ

Aα) ≥
∧

α∈Γ

σ(Aα)
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Now let λ =
∧{(

⋂

α∈Γ

Aα)(x) : x ∈ supp(
⋂

α∈Γ

Aα)}. Then

λ =
∧
{

∧

α∈Γ

Aα(x) : x ∈ supp(
⋂

α∈Γ

Aα)}

=
∧

α∈Γ

(
∧
{Aα(x) : x ∈ supp(

⋂

α∈Γ

Aα)})

≥
∧

α∈Γ

(
∧
{Aα(x) : x ∈ supp(Aα)}).

Thus, by the definition of σ,
σ(

⋂

α∈Γ

Aα) = λ

≥
∧

α∈Γ

[
∧
{Aα(x) : x ∈ supp(Aα)},

∧
{Aα(x) : x ∈ supp(Aα)}]

=
∧

α∈Γ

σ(Aα).

Hence σ ∈IVGCO(X).

Remark 4.4. Let σ be the IVGCO on X given by Proposition 4.4.
Then its conjugate gradation Fσ is given by, for each A ∈ IX ,

Fa(A) = σ(Ac)
= [

∧{Ac(x) : x ∈ supp(Ac)}, ∧{Ac(x) : x ∈ supp(Ac)}]
= [

∧{1−A(x) : A(x) 6= 0}, ∧{1−A(x) 6= 0}]
= [1−∨{A(x) : A(x) 6= 0}, 1−∨{A(x) : A(x) 6= 0}].

Example 4.4. Let X be a set with two points at least. We define the
mapping δ : IX → D(I) as follows : For each A ∈ IX ,

σ(A) =
{

1 if A = ∅ or A = X or supp(A) = X,
0 if supp(A) 6= X.

Then it can be easily seen that δ ∈IVGO(X). For a fixed point p ∈ X
and for n=1,2,· · ·, we define the mapping Gn : X → I as follows : For
each x ∈ X,

Gn(x) =
{

1
n if x 6= p,
1 if x = p.

Then clearly {Gn}n∈N ⊂ IX and δ(Gn) = 1 ∀n ∈ N, where N denotes
the set of all positive integers. But, δ(

⋂

n∈N
Gn) = 0. Thus δ(

⋂

n∈N
Gn) <
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1 =
∧

n∈N
δ(Gn). So δ 6∈IVGC(X). Hence δ 6∈IVGCO(X).

The following gives a sufficient condition to be an IVGCO.

Proposition 4.5. Let δ : IX → D(I) be a mapping. Consider the
following conditions :

(a) σL(A) ≤ σU (A), ∀A ∈ IX ,
(b) σ(∅) = 1,
(c) σ(A) = σ(Ac), ∀A ∈ IX ,
(d) σ(

⋃

α∈Γ

Aα) ≥
∧

α∈Γ

σ(Aα), ∀{Aα}α∈Γ ⊂ IX ,

(e) σ(
⋂

α∈Γ

Aα) ≥
∧

α∈Γ

σ(Aα), ∀{Aα}α∈Γ ⊂ IX .

If σ satisfies the condition (a)∼(d) or (a)∼(c) and (e), then σ ∈ IVGCO(X).

Proof. The condition (e) is deduced from the condition (b) and (c).
Also the condition (d) is deduced from the condition (b) and (e). Hence,
by Theorem 4.2, σ ∈ IVGCO(X).

The following is the immediate result of Theorem 4.2 and Proposition
4.5.

Corollary 4.5. If σ ∈ IVGO(X) or σ ∈IVGC(X), and σ(A) = σ(Ac)
for each A ∈ IX , then σ ∈ IVGCO(X).

The following is the immediate result of Definition 4.3 and Proposi-
tion 3.11.

Proposition 4.6. Let {τα}α∈Γ ⊂IVGC(X) [resp. IVGCO(X)]. Then⋂

α∈Γ

τα ∈ IVGC(X) [resp. IVGCO(X)].

Definition 4.7. Let {τα}α∈Γ ⊂IVGO(X). Then the union of {τα}α∈γ ,
denoted by

⋃

α∈Γ

τα, is defined as follows : For each A ∈ IX ,

(
⋃

α∈Γ

τα)(A) = [
∨

α∈Γ

τ L
α (A),

∨

α∈Γ

τ U
α (A)].

The following example shows that the union of two IVGCOs is not,
in general, an IVGO(IVGC) even they are conjugate.
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Example 4.7. Let X be a set with two points at least. Let {M, N} be
a partition of X, let 1

2 < λ < 1 and let µ = 1 − λ. Consider two fuzzy
sets A and B in X defined as follows : For each x ∈ X,

A(x) =
{

0 if x ∈ M
λ if x ∈ N

and

B(x) =
{

µ if x ∈ M
0 if x ∈ N.

Then A ∪B is the fuzzy set in X given by, for each x ∈ X,

(A ∪B)(x) =
{

µ if x ∈ M
λ if x ∈ N.

Let σ be the interval-valued support gradation and let δ be its conjugate
gradation. Then

(σ ∪ δ)(A ∪B) = [µ, µ],
and

(σ ∪ δ)(A) = [λ, λ], (σ ∪ δ)(B) = [1− µ, 1− µ] = [λ, λ].
Since 1

2 < λ < 1 and µ = 1− λ, µ < λ. Thus
(σ ∪ δ)(A ∪B) = [µ, µ] < [λ, λ] = (σ ∪ δ)(A) ∧ (σ ∪ δ)(B)

So σ ∪ δ 6∈IVGCO(X).

Definition 4.8[9]. Let (X, T ) be a Chang’s fuzzy topological space.
Then the fuzzy space X (the fuzzy topology T ) is said to be interp-
reservative[resp. super 0-dimensional] if the intersection of each family
of open sets is open [resp. each open set is closed or equivalently if the
family of closed sets in X agrees with T .

It is clear that if X is super 0-dimensional, then X is interpreservative.

Definition 4.9. Let σ ∈IVGO(X) and let T be a Chang’s fuzzy topology
on X. We define the mapping σ∗ : IX → B(I) as follows : For each
A ∈ IX ,

σ∗(A) =
{

σ(A) if A ∈ T,
0 otherwise.

Then σ∗ is called the deduced gradation from σ and T .
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It is clear that σ∗ ∈IVGO(X) and its [λ, µ]-level σ ∗
[λ,µ] is σ ∗

[λ,µ] =
σ[λ,µ] = σ[λ,µ] ∩ T for each [λ, µ] ∈ D(I).

The following is the immediate result of Definitions 4.8 and 4.9.

Proposition 4.10. Let σ ∈IVGO(X) and let T be a Chang′s fuzzy
topology. Then

(a) If σ∗ is deduced gradation from σ and T , then σ∗ ∈IVGCO(X).
(b) If δ is the conjugate gradation of σ and T is super 0-dimensional,

then δ∗ is the conjugate gradation of σ∗ and hence δ∗ ∈IVGCO(X).

Example 4.10. Let σ be the interval-valued support gradation on R,
let δ be its conjugate and let T be the laminated indiscrete topology
on R[13], i.e., T is constituted by the constant mappings on R. Then
clearly σ and T satisfies (b) of Proposiotion 4.10. Let fα ∈ T be the
constant mapping given by fα(x) = α for each x ∈ X. Then, the
deduced gradation gradation σ∗ from σ and T is given by : For each
A ∈ IX ,

σ(A) =





1 if A = ∅ or A = X,
[α, α] if A = fα ∈ T and α 6= 0,
0 otherwise.

Then
δ∗(∅) = δ∗(X) = 1,

δ∗(fα) = δ(fα) = σ(1− fα) = [1− α, 1− α]
= σ∗(1− fα) = σ∗(f c

α ), if α 6= 1.
By the definition of T , it is clear that A ∈ T if and only if Ac(= 1−A) ∈
T . Thus, for A 6∈ T , δ∗(A) = σ∗(Ac) = 0. So σ∗ and δ∗ are conju-
gate.

Definition 4.11. Let τ, η ∈ IVGO(X). Then we say that τ is equiva-
lent to η, F denoted by τ ≈ η, if their families [λ, µ]-levels agree, i.e.,
{τ[λ,µ]}[λ,µ]∈D(I) = {η[a,b]}[a,b]∈D(I).

Proposition 4.12. Let σ ∈IVGO(X) [resp. IVGC(X)] and let ϕ :
I → I be an increasing continuous mapping with ϕ(1) = 1. Then
ϕ ◦ σ = [ϕ ◦ σL, ϕ ◦ σU ] ∈IVGO(X) [resp. IVGC(X)]. Moreover, if ϕ is
strictly increasing, then σ ≈ ϕ ◦ σ.
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Proof. Suppose σ ∈IVGO(X). Then it is clear that the condition
(IVGO1) holds. On the other hand,

(ϕ ◦ σ)(∅) = [(ϕ ◦ σL)(∅), (ϕ ◦ σU )(∅)]
= [(ϕ(σL)(∅)), (ϕ(σU )(∅))]
= [(ϕ(1), (ϕ(1)]
= [1, 1] = 1.

Similarly, (ϕ ◦ σ)(X) = 1. Thus the condition(IVGO2) holds.
Let A,B ∈ IX . Then
(ϕ ◦ σ)(A ∩B) = [(ϕ ◦ σL)(A ∩B), (ϕ ◦ σU )(A ∩B)]
≥ [(ϕ(σL(A ∩B)), (ϕ(σU (A ∩B))]
≥ [(ϕ(σL(A) ∧ σL(B)), (ϕ(σU (A) ∧ σU (B))]. (4.1)
[Since σ ∈ IVGO(X)]

Suppose σL(A) ≤ σL(B). Since ϕ is increasing continuous,
ϕ(σL(A)) ≤ ϕ(σL(B)).

Thus
ϕ(σL(A)) ≤ ϕ(σL(B)) = ϕ(σL(A)) = ϕ(σL(A)) ∧ ϕ(σL(B))
= (ϕ ◦ σL)(A) ∧ (ϕ ◦ σL)(B). (4.2)

Similarly, we have
ϕ(σU )(A) ∧ σU (B) = (ϕ ◦ σU )(A) ∧ (ϕ ◦ σU )(B). (4.3)

So, by (4.1),(4,2) and (4,3),
(ϕ ◦ σ)(A ∩B) ≥ (ϕ ◦ σ)(A) ∧ (ϕ ◦ σ)(B).

Hence the condition (IVGO3) holds.

Now let {Aα}α∈Γ ⊂ IX and let [λ, µ] =
∧

α∈Γ

σ(Aα).

Suppose ∃α0 ∈ Γ such that [λ, µ] = σ(Aα0). Then

(ϕ ◦ σ)(
⋃

α∈Γ

Aα) = [ϕ(σL(
⋃

α∈Γ

Aα)), ϕ(σU (
⋃

α∈Γ

Aα))]

≥ [ϕ(
∧

α∈Γ

σL(Aα)), ϕ(
∧

α∈Γ

σU (Aα))] [Since σ ∈IVGO(X)]

= [ϕ(σL(Aα0)), ϕ(σU (Aα0))] [By the hypothesis]
= [(ϕ ◦ σ)(Aα0)]

≥
∧

α∈Γ

(ϕ ◦ σ)(Aα).

Suppose @α0 ∈ Γ such that [λ, µ] = σ(Aα0). Then λ ∈ ac{aL(Aα) :
α ∈ Γ} and µ ∈ ac{σU (Aα) : α ∈ Γ}. Thus ∃ strictly decreasing
sequences {σL(An)}∞n=1 and {σU (An)}∞n=1 such that they converge to
λ and µ, respectively. So {(ϕ ◦ σL)(An)}∞n=1 and {(ϕ ◦ σU )(An)}∞n=1
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are lower bounded sequences and thus they converge to their infimums,
respectively. Hence

lim
n→∞(ϕ ◦ σL)(An) =

∧
n

(ϕ ◦ σL)(An)

≥
∧

α∈Γ

(ϕ ◦ σL)(Aα) (4.4)

Similarly, we have
lim

n→∞(ϕ ◦ σU )(An) ≥
∧

α∈Γ

(ϕ ◦ σL)(Aα). (4.5)

On the other hand,
(ϕ◦σ)(

⋃

α∈Γ

Aα) ≥ [ϕ(
∧

α∈Γ

σL(Aα)), ϕ(
∧

α∈Γ

σU (Aα))] [Since σ ∈ IVGO(X)]

= [ϕ(λ), ϕ(µ)] [Since [λ, µ] =
∧

α∈Γ

σ(Aα)]

= [ϕ( lim
n→∞σL(An)), ϕ( lim

n→∞σU (An))]

= [ lim
n→∞(ϕ ◦ σL)(An), lim

n→∞(ϕ ◦ σU (An))]. (4.6)

[Since ϕ is continuous]
From (4.4), (4.5) and (4.6),

(ϕ ◦ σ)(
⋃

α∈Γ

Aα) ≥
∧

α∈Γ

(ϕ · α)(Aα).

So ϕ ◦ σ satisfies the condition (IVGO4). Hence ϕ ◦ σ ∈ IVGO(X).
Suppose σ ∈ IVGC(X). By the similar way, we can prove that
(ϕ ◦ σ)(

⋂

α∈Γ

Aα) ≥ (
∧

α∈Γ

)(ϕ ◦ α)(Aα)

for each {Aα}α∈Γ ⊂ IX . Also we can easily see that the remainders
hold. Hence ϕ ◦ σ ∈ IVGC(X).

The following example shows that the continuity condition for the
mapping ϕ in Proposition 4.12 cannot be removed. The following is the
modification of Example 2.16 in [9].

Example 4.12. Let δ∗ be same as in Example 4.10. Let ϕ : I → I be
the mapping defined as follows : For each x ∈ I,

ϕ(x) =





1
2x if x < 1

2 ,
1
2 if x = 1

2 ,
1
2x + 1

2 if x > 1
2 .

Then ϕ is strictly increasing and ϕ(1) = 1. But it is not continuous at
x = 1

2 . We will show that ϕ ◦ δ∗ is not an IVGO :
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Consider a strictly increasing sequence {kn}∞n=1 such that lim
n→∞ kn =

1
2

and 0 ≤ kn ≤ 1
2 ∀n ∈ N. For each n ∈ N we define the contant

mapping Kn : R → I as follows : For each x ∈ R, Kn(x) = kn. Then
δ∗(Kn) = [1−kn, 1−kn] and {1−kn}∞n=1 is a strictly decreasing sequence
contained in I such that (1− kn) = 1

2 . Thus
(ϕ ◦ δ∗)(Kn) = [(ϕ ◦ δ∗L

)(Kn), (ϕ ◦ δ∗U
)(Kn)]

= [ϕ(1− kn), ϕ(1− kn)]
= [1−kn

2 + 1
2 , 1−kn

2 + 1
2 ].

So ϕ(1− kn)∞n=1 is a strictly decreasing sequence such that lim
n→∞ϕ(1 −

kn) = 3/4. Hence (ϕ ◦ δ∗)(Kn) ≥ 3/4, for n = 1, 2, · · ·.
On the other hand,

∞⋃

n=1

Kn is the constant mapping f 1
2

: R→ I given

by f 1
2
(x) = 1

2 for each x ∈ R. Then

(ϕ ◦ δ∗)(
∞⋃

n=1

Kn) = [1− 1/2, 1− 1/2] = 1/2.

Thus

(ϕ ◦ δ∗)(
∞⋃

n=1

Kn) = [ϕ(1/2), ϕ(1/2)] = 1/2.

So

(ϕ, δ∗)(
∞⋃

n=1

Kn) <

∞∧

n=1

(ϕ ◦ δ∗)Kn.

Hence ϕ ◦ δ∗ 6∈ IVGO(X).

5. Interval-valued fuzzy subspace.

Definition 5.1[10]. Let Y be a subset of X and let A ∈ IX . Then the
restriction of A on Y is denoted by A|Y . For each B ∈ IY , the extension
of B, on X, denoted by BX , is defined by

BX(x) =
{

B(x) if x ∈ Y,
0 if x ∈ X\Y, for each x ∈ X.

Proposition 5.2. Let (X, τ) be an IVFTS and let Y ⊂ X. We define
the mapping τY : IY → D(I) as follows : For each A ∈ IY ,

τY (A) =
∨{τ(B) : B ∈ IX and A = B|Y}.
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Then τY ∈ IVGO(Y) and τY (A) ≥ τ(AX). In this case, the IVFTS
(Y, τY ) is called a subspace of (X, τ) and τY is called the induced IVGO
on Y from (X,τ).

Proof. For each A ∈ IY , let B ∈ IX such that A = B|Y . Then
τL(B) ≤ τU (B).

Thus∨{τL(B) : A = B|Y } ≤
∨{τU (B) : A = B|Y }

So, by the definition of τY ,
τ L
Y (A) ≤ τ U

Y (A).
Hence τY satisfies the condition (IVGO1). It is obvious that (IVGO2)
holds.

Let A1, A2 ∈ IY . Then
τY (A1 ∩A2) =

∨{τ(B) : B ∈ IXandA1 ∩A2 = B|Y}.
Suppose τY (A1) ∧ τY (A2) = 0. Then clearly

τY (A1 ∩A2) ≥ 0 = τY (A1) ∧ τY (A2).
Suppose τY (A1) ∧ τY (A2) > 0. Let 0 < [λ, µ] < τY (A1) ∧ τY (A2).
Then ∃Bi ∈ IX such that Ai = Bi|Y and τ(Bi) > [λ, µ], i = 1, 2. Since
τ ∈ IVGO(X),

τ(B1 ∩B2) ≥ τ(B1) ∧ τ(B2) > [λ, µ].
On the other hand,

(B1 ∩B2)|Y = (B1|Y ) ∩ (B2|Y ) = A1 ∩A2.
Thus

τY (A1 ∩A2) ≥ τ(B1 ∩B2) > [λ, µ].
So, by the definition of τY ,

τY (A1 ∩A2) ≥ τY (A1) ∧ τY (A2).
In either cases,

τY (A1 ∩A2) ≥ τY (A1) ∧ τY (A2).
Hence the condition (IVGO3) holds.

Now let {Aα}α∈Γ ⊂ IX . Then
τY (

⋃

α∈Γ

Aα) =
∨
{τ(B) : B ∈ IX and

⋃

α∈Γ

Aα = B|Y}.

Suppose
∧

α∈Γ

τY (Aα) = 0. Then clearly

τY (
⋃

α∈Γ

Aα) ≥ 0 =
∧

α∈Γ

τY (Aα).

Suppose
∧

α∈Γ

τY (Aα) > 0 and let 0 < [λ, µ] <
∧

α∈Γ

τY (Aα). Then

τY (Aα) > [λ, µ], ∀α ∈ Γ.
Thus ∃Bα ∈ IX such that Aα = Bα|Y and τ(Bα) > [λ, µ], ∀α ∈ Γ.
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So
τ(

⋃

α∈Γ

Bα) ≥ [λ, µ].

On the other hand,
(
⋃

α∈Γ

Aα)|Y =
⋃

α∈Γ

(Aα|Y ) = (
⋃

α∈Γ

Bα).

Thus, by the definition of τY ,
τY (

⋃

α∈Γ

Aα) ≥
∧

α∈Γ

τY (A2).

In either cases, τY satisfies the condition (IVGO4). Hence τ ∈ IVGO(Y ).
It is clearly that τY (A) ≥ τ(AX), ∀A ∈ IY .

Proposition 5.3. Let (Y, τY ) be an interval-valued fuzzy subspace of
the IVFTS (X, τ) and let A ∈ IY . Then

(a) FτY (A) =
∨{Fτ (B) : B ∈ IX and A = B|Y }.

(b) If Z ⊂ Y ⊂ X, then τZ = (τY )Z .

Proof. The proofs are very similar to that of Proposition 3.3 in (7). So
they are omitted.

6. Interval-valued gradation of preserving mappings

Definition 6.1. Let (X, τ) and (Y, η) be two IVSTSs and let f : X → Y
be a mapping. Then f is called an interval-valued gradation preserving
mapping (in short, an IVGP-mapping) or interval-valued smooth contin-
uous if for each B ∈ IY ,

η(B) ≤ τ(f−1(B)), i.e., [ηL(B), ηU (B)] ≤ [τL(f−1(B)), τU (f−1(B))].

Definition 6.1′[7]. Let (X, τ) and (Y, η) be two STSs and let f : X →
Y be a mapping. Then f is called a gradation preserving mapping (in
short, an GP-mapping) or smooth continuous if for each B ∈ IY , η(B) ≤
τ(f−1(B).

Remark 6.1. (a) If a mapping f : (X, τ) → (Y, η) is a GP-mapping,
then f : (X, [τ, τ ]) → (Y, [η, η]) is an IVGP-mapping.

(b) If a mapping f : (X, τ) → (Y, η) is an IVGP-mapping, then
f : (X, τL) → (Y, ηL) and f : (X, τU ) → (Y, ηU ) are GP-mappings, re-
spectively.
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Theorem 6.2. Let (X, τ) and (Y, η) be two IVSTSs and let f : X → Y
be a mapping. Then f : (X, τ) → (Y, η) is an IVGP-mapping if and
only if f : (X, τ[λ,µ]) → (Y, η[λ,µ]) is continuous w.r.t. Chang, for each
[λ, µ] ∈ D(Io).

Proof. (⇒): Suppose f is an IVGP-mapping. Let [λ, µ] ∈ D(I0) and let
B ∈ η[λ,µ]. Since η ∈ IVGO(Y ), η(B) ≥ [λ, µ]. Then, by the hypothesis,
η(B) ≤ τ(f−1(B)). Thus

τ(f−1(B)) ≥ [λ, µ].
So f−1(B) ∈ τλ,µ. Hence f : (X, τ[λ,µ]) → (Y, η[λ,µ]) is continuous w.r.t.
Chang.

(⇐): Suppose f : (X, τ[λ,µ]) → (Y, η[λ,µ]) is continuous for each
[λ, µ] ∈ D(I0). Let B ∈ IY . If η(B) = 0, then clearly η(B ≤ τ(f−1(B))).
If η(B) = [λ, µ], then B ∈ η[[λ,µ]. Thus, by the hypothesis, f−1(B) ∈
τ[λ,µ]. So τ(f−1(B)) ≥ [λ, µ] = η(B). In either cases, η(B) ≤ τ(f−1(B)).
Hence f is an IVGP-mapping.

Theorem 6.3. Let (X,T) and (Y,T′) be two Chang’s fuzzy topological
space and let f : X → Y be a mapping. Then f : (X, T ) → (Y, T ′)
is continuous if and only if f : (X, T [λ,µ]) → (Y, (T ′)[λ,µ]) is an IVGP-
mapping, for each [λ, µ] ∈ D(I0).

Proof. (⇒) : Suppose f : (X, T ) → (Y, T ′) is continuous, let B ∈ IY

and let [λ, µ] ∈ D(I0). Then we have the following cases:
(i) B = φ or Y ,
(ii) B ∈ T ′,
(iii) B 6∈ T ′.

Case (i) : f−1(φ) = φ or f−1(Y ) = X. Thus
(T ′)[λ,µ](B) ≤ T [λ,µ](f−1(B)).

Case (ii) : Clearly (T ′)[λ,µ](B) = [λ, µ]. Since f is continuous, f−1(B) ∈
T . Thus T [λ,µ](f−1(B)) = [λ, µ]. So

(T ′)[λ,µ] ≤ T λ,µ(f−1(B)).
Case(iii) : It is clear that (T ′)λ,µ(B) = 0. Thus

0 = (T ′)[λ,µ](B) ≤ T λ,µ(f−1(B)).
So, in all cases, f : (X, T λ,µ) → (Y, (T ′)[λ,µ]) is an IVGP-mapping.

(⇐) : It follows from Proposition 3.18 and Theorem 6.2.

The following is the immediate result of Definition 6.1.
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Proposition 6.4. Let (X, τ), (Y, η) and (Z, ξ) be IVSTSs.
(a) 1X : (X, τ) → (X, τ) is an IVGP-mapping.
(b) If f : (X, τ) → (Y, η) and g : (Y, η) → (Z, ξ) is IVGP-mappings,

then g ◦ f : (X, τ) → (Z, ξ) is an IVGP-mapping.

We can easily see that the collection of all IVFTSs and IVGP-mapping
between then forms a concrete category and we will denote it by IVTop.

Theorem 6.5. Let (X, τ) be an IVFTS and let f : X → Y be a
mapping. Let {Tλ,µ}λ,µ ∈ D(I0) be a descending family of chang’s fuzzy
topologies on Y . Let η be the IVGO on X generated by this family. For
each [λ, µ] ∈ D(I0), suppose B[λ,µ] or S[λ,µ] is a base or a subbase for
T[λ,µ], respectively. Then the followings are equivalent:

(a) f : (X, τ) → (y, η) is an IVGP-mapping.
(b) τ(f−1(B)) ≥ [λ, µ], ∀B ∈ T[λ,µ], ∀[λ, µ] ∈ D(I0).
(c) τ(f−1(B)) ≥ [λ, µ], ∀B ∈ B[λ,µ], ∀[λ, µ] ∈ D(I0).
(d) τ(f−1(B)) ≥ [λ, µ], ∀B ∈ S[λ,µ], ∀[λ, µ] ∈ D(I0).

Proof. (a) (⇒) (b) : Suppose (a) holds. Let [λ, µ] ∈ D(I0) and let
B ∈ T[λ,µ].
Then τ(f−1(B)) ≥ ζ(B) ≥ [λ, µ].

It is obvious that (b) ⇒ (c) ⇒ (d) hold.
(d) (⇒) (a) : Suppose (d) holds. Let B ∈ IY and, without loss of

generality, let η(B) = [λ, µ] > 0. Then B ∈ T[λ,µ]. Now, B is of the

form, B =
⋃

α∈Γ

Bα, where Bα ∈ B[λ,µ], ∀α ∈ Γ. Also, for each α ∈ Γ, Bα

is of the form, Bα =
⋃

nα
j=1Sα,j , where Sα,j ∈ S[λ,µ], ∀ j = 1, 2, · · ·, nα.

Thus

τ(f−1(B)) = τ(f−1(
⋃

α∈Γ

(
nα⋂

j=1

Sα,j)))

= τ(
⋃

α∈Γ

(
nα⋂

j=1

f−1(Sα,j)))

≥
∧

α∈Γ

(
nα∧

j=1

τf−1(Sα,j))) [Since τ ∈ IVGO(X)]

≥ [λ, µ]. [By the condition (d)]
So τ(f−1(B)) ≥ η(B). Hence f : (X, τ) → (Y, η) is on IVGP-mapping.
This completes the proof.
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