• Title/Summary/Keyword: fuzzy control systems

Search Result 2,200, Processing Time 0.044 seconds

A fuzzy dynamic learning controller for chemical process control

  • Song, Jeong-Jun;Park, Sun-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1950-1955
    • /
    • 1991
  • A fuzzy dynamic learning controller is proposed and applied to control of time delayed, non-linear and unstable chemical processes. The proposed fuzzy dynamic learning controller can self-adjust its fuzzy control rules using the external dynamic information from the process during on-line control and it can create th,, new fuzzy control rules autonomously using its learning capability from past control trends. The proposed controller shows better performance than the conventional fuzzy logic controller and the fuzzy self organizing controller.

  • PDF

Neuro-Fuzzy Control of Inverted Pendulum System for Intelligent Control Education

  • Lee, Geun-Hyung;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.309-314
    • /
    • 2009
  • This paper presents implementation of the adaptive neuro-fuzzy control method. Control performance of the adaptive neuro-fuzzy control method for a popular inverted pendulum system is evaluated. The inverted pendulum system is designed and built as an education kit for educational purpose for engineering students. The educational kit is specially used for intelligent control education. Control purpose is to satisfy balancing angle and desired trajectory tracking performance. The adaptive neuro-fuzzy controller has the Takagi-Sugeno(T-S) fuzzy structure. Back-propagation algorithm is used for updating weights in the fuzzy control. Control performances of the inverted pendulum system by PID control method and the adaptive neuro-fuzzy control method are compared. Control hardware of a DSP 2812 board is used to achieve the real-time control performance. Experimental studies are conducted to show successful control performances of the inverted pendulum system by the adaptive neuro-fuzzy control method.

INTERPOLATIVE REASONING FOE COMPUTATIONALLY EFFICIENT OPTIMAL FUZZY CONTROL

  • Kacprzyk, Janusz
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1270-1273
    • /
    • 1993
  • Fuzzy optimal control is considered. An optimal sequence of controls is sought best satisfying fuzzy constraints on the controls and fuzzy goals on the states (outputs), with a fuzzy system under control Control over a fixed and specified, implicitly specified, fuzzy, and infinite termination time is discussed. For computational efficiency a small number of reference fuzzy staters and controls is to be assumed by which fuzzy controls and stated are approximated. Optimal control policies reference fuzzy states are determined as a fuzzy relation used, via the compositional rule of inference, to derive an optimal control. Since this requires a large number of overlapping reference fuzzy controls and states implying a low computational efficiency, a small number of nonoverlapping reference fuzzy states and controls is assumed, and then interpolative reasoning is used to infer an optimal fuzzy control for a current fuzzy state.

  • PDF

A Note to the Stability of Fuzzy Closed-Loop Control Systems

  • Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.89-97
    • /
    • 2001
  • Chen and Chen(FSS, 1993, 159-168) presented a reasonable analytical model of fuzzy closed-loop systems and proposed a method to analyze the stability of fuzzy control by the relational matrix of fuzzy system. Chen, Lu and Chen(IEEE Trans. Syst. Man Cybern., 1995, 881-888) formulated the sufficient and necessary conditions on stability of fuzzy closed-loop control systems. Gang and Chen(FSS, 1996, 27-34) deduced a linguistic relation model of a fuzzy closed loop control system from the linguistic models of the fuzzy controller and the controlled process and discussed the linguistic stability of fuzzy closed loop system by a linguistic relation matrix. In this paper, we study more on their models. Indeed, we prove the existence and uniqueness of equilibrium state $X_e$ in which fuzzy system is stable and give closed form of $X_e$. The same examples in Chen and Chen and Gang and Chen are treated to analyze the stability of fuzzy control systems.

  • PDF

Neural Network Compensation Technique for Standard PD-Like Fuzzy Controlled Nonlinear Systems

  • Song, Deok-Hee;Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • In this paper, a novel neural fuzzy control method is proposed to control nonlinear systems. A standard PD-like fuzzy controller is designed and used as a main controller for the system. Then a neural network controller is added to the reference trajectories to form a neural-fuzzy control structure and used to compensate for nonlinear effects. Two neural-fuzzy control schemes based on two well-known neural network control schemes, the feedback error learning scheme and the reference compensation technique scheme as well as the standard PD-like fuzzy control are studied. Those schemes are tested to control the angle and the position of the inverted pendulum and their performances are compared.

Fuzzy H$\infty$ Filtering for Nonlinear Systems with Time-Varying Delayed States

  • Lee, Kap-Rai;Lee, Jang-Sik;Oh, Do-Chang;Park, Hong-Bae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 1999
  • This paper presents a fuzzy H$\infty$ filtering problem for a class of uncertain nonlinear systems with time-varying delayed states and unknown inital state on the basis of Takagi-Sugeno(T-S) fuzzy model. The nonlinear systems are represented by T-S fuzzy models, and the fuzzy control systems utilize the concept of the so-called parallel distributed compensation. Using a single quadraic Lyapunov function, the stability and L2 gain performance from the noise signals to the estimation error are discussed. Sufficient conditions for the existence of fuzzy H$\infty$ filters are given in terms of linear matrix inequalities (LMIs). The filtering gains can also be directly obtained from the solutions of LMIs.

  • PDF

Simulation of the Air Conditioning System Using Fuzzy Logic Control

  • Mongkolwongrojn, M.;Sarawit, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2270-2273
    • /
    • 2003
  • Fuzzy logic control has been widely implemented in air conditioning and ventilation systems which has uncertainty or high robust system. Since the dynamic behaviors of the systems contain complexity and uncertainty in its parameters , several fuzzy logic controllers had been implemented to control room temperature in the field of air conditioning system. In this paper, the fuzzy logic control has been developed to control room temperature and humidity in the precision air conditioning systems. The nonlinear mathematical model was formulated using energy and continuity equations. MATLAB was used to simulate the fuzzy logic control of the multi-variable air conditioning systems. The simulation results show that fuzzy logic controller can reduce the steady-state errors of the room temperature and relative humidity in multivariable air conditioning systems. The offset are less than 0.5 degree Celsius and 3 percent in relative humidity respectively under random step disturbance in heating load and moisture load respectively

  • PDF

A Suggestion of Nonlinear Fuzzy PID Controller to Improve Transient Responses of Nonlinear or Uncertain Systems

  • Kim, Jong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.87-100
    • /
    • 1995
  • In order to control systems which contain nonlinearities of uncertainties, control strategies must deal with the effects of them. Since most of control methods based on system mathematical models have been mainly developed focused on stability robustness against nonlinearities or uncertainties under the assumption that controlled systems are linear time invariant, they have certain amount of limitations to smartly improve the transient responses of systems disturbed by nonlinearities or uncertainties. In this paper, a nonlinear fuzzy PID control method is suggested which can stably improve the transient responses of systems disturbed by nonlinearities, as well as systems whose mathematical characteristics are not perfectly known. Although the derivation process is based on the design process similar to general fuzzy logic controller, resultant control law has analytical forms with time varying PID gains rather than linguistic forms, so that implementation using common-used versatile microprocessors cna be achieved easily and effectively in real-time control aspect.

  • PDF

Design of Fuzzy Logic Control System for Segway Type Mobile Robots

  • Kwak, Sangfeel;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Studies on the control of inverted pendulum type systems have been widely reported. This is because this type of system is a typical complex nonlinear system and may be a good model to verify the performance of a proposed control system. In this paper, we propose the design of two fuzzy logic control systems for the control of a Segway mobile robot which is an inverted pendulum type system. We first introduce a dynamic model of the Segway mobile robot and then analyze the system. We then propose the design of the fuzzy logic control system, which shows good performance for the control of any nonlinear system. In this paper, we here design two fuzzy logic control systems for the position and balance control of the Segway mobile robot. We demonstrate their usefulness through simulation examples. We also note the possibility of simplifying the design process and reducing the computational complexity. This possibility is the result of the skew symmetric property of the fuzzy rule tables of the system.

Output Feedback Fuzzy H(sup)$\infty$ Control of Nonlinear Systems with Time-Varying Delayed State

  • Lee, Kap-Rai
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2000
  • This paper presents and output feedback fuzzy H(sup)$\infty$ control problem for a class of nonlinear systems with time-varying delayed state. The Takagi-Sugeno fuzzy model is employed to represent a nonlinear systems with time-varying delayed state. Using a single quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of fuzzy H(sup)$\infty$ controllers are given in terms of matrix inequalities. Constructive algorithm for design of fuzzy H(sup)$\infty$ controller is also developed. A simulation example is given to illustrate the performance of the proposed design method.

  • PDF