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Output Feedback Fuzzy H Control of Nonlinear Systems with
Time-Varying Delayed State

Kap Rai Lee

Abstract: This paper presents an output feedback fuzzy H° control problem for a class of nonlinear systems with time-varying delayed
state. The Takagi-Sugeno fuzzy model is employed to represent a nonlinear systems with time-varying delayed state. Using a single
quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are
discussed. Sufficient conditions for the existence of fuzzy H> controllers are given in terms of matrix inequalities. Constructive
algorithm for design of fuzzy H* controller is also developed. A simulation example is given to illustrate the performance of the

proposed design method.
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I. Introduction

There have been significant research efforts on the stabil-
ity analysis and systematic design for fuzzy control systems
[1]-[7). These methods are conceptually simple and straight-
forward. The nonlinear system is represented by a Takagi-
Sugeno(T-S)-type fuzzy model. And then, the control design
is carried out on the basis of the fuzzy model via the so-called
parallel distributed compensation scheme. Since uncertainties
are frequently a source of instability, Tanaka et al. [5], [6] pre-
sented stability analysis for a class of uncertain nonlinear sys-
tems and method for designing robust fuzzy controllers to sta-
bilize the uncertain nonlinear systems. However, all the above
design method has to predetermine the state feedback gains be-
fore checking the stability condition of the closed-loop system.
In real control problems, all of the states are not available, thus
it is necessary to design output feedback controller. Ma et al.
[8] presented the analysis and design of the fuzzy controller and
fuzzy observer on the basis of T-S fuzzy model using separation
property. Tanaka et al. [9] also presented systematic design
method of the fuzzy regulator and fuzzy observer on the basis
of T-S fuzzy model.

The H® control approach is concerned with the design of
controller which stabilizes a system while satisfying an H*°-
norm bound constraint on disturbance attenuation [10]-[12].
Over past a few years, H control of T-S fuzzy model are
paid a lot of attention in fuzzy control [13}-[15]. Han and Feng
[13] and Hong and Langari [14] presented H* controller de-
sign for fuzzy dynamic systems with state feedback. Chen et al.
[15] presented the design method of an observer-based fuzzy
H® controller via an LMI approach. Since time delay is fre-
quently a source of instability and encountered in various engi-
neering systems, the H* control problem for delayed systems
has received considerable attention over the last few decades
[16]-[18].

However for a fuzzy control system, there are few publica-
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tions on H*° control design for delayed systems.

In this paper, we design an output feedback fuzzy H* con-
troller for fuzzy dynamic system with time-varying delayed
state. The controller design is carried out on the basis of the T-S
fuzzy model and the resulting controller is tuned on-line based
on fuzzy operations. A sufficient condition is derived such that
the closed-loop system is globally exponentially stable and L2
gain of the input-output map is bounded. Based on the deriva-
tion, constructive algorithm of LMI-based fuzzy H° controller
are presented.

II. Problem formulation
The continuous fuzzy dynamic model, proposed by Takagi
and Sugeno, is described by fuzzy IF-THEN rules which rep-
resented local linear input-output relations of nonlinear system.
Consider a nonlinear system with time varying delay that can be
described by the following T-S fuzzy model with time-varying
delay:
Plant Rule ::
IF z1(t) is M;; and --- and z4(t) is Mg
THEN x(t) = A;x(t) + Ag,x(t — d(t)) + By, w1 (t)
+ B, u(t) a
ei(t) = Cix(t), ex(t) = u(t)
Y(t) = Cyix(t) + Wz(t), i= 17 2’ LT
x(t) =0, t<0,

where M;; is the fuzzy set, x(t) € R™ is the state vector,
u(t) € R* is the control input vector, [w{ (t) wi (1)]T € R?
is the square-integrable disturbance input vector, y(t) € R*2
is the measured output, [e] (¢) eZ (¢)]7 € R is the controlled
output vector, r is the number of IF-THEN rules, z; ~ z, are
some measurable system variables, i.e., the premise variables,
and all matrices are constant matrices with appropriate dimen-
sions, d(t) are the time-varying delay with following assump-
tions:

0<d(t) <oo,dt) <B <1 2)

Let p£:(2(¢)) be the normalized membership function of the
inferred fuzzy set h;(2(t)), i.e.,

pi(z(®) = hi(a(t)/ Y hi(z(t)), )
i=1
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where
g
hi(z(t)) = HMij(Zj(t))
2(t) = [2(t) 2() - @) “

M;;(z;(t)) is the grade of membership of z; (t) in M;;. Itis
assumed that

hi(z(t)) > 0, i=1,2,---,r

ihi(z(t)) > 0, (%)

for all . Then we can obtain the following conditions:

:u’l(z(t)) > 07 121;27 T
Zui(Z(t))

forallt. Let P € R’ be the set of membership function satisfy-
ing (6). Given a pair of (y(£), u(t)), by using a center average
defuzzifer, product inference, and singleton fuzzifier, the dy-
namic fuzzy model (1) can be expressed by the following global
model

]

1 (6

() = AGx(t)+Aspx(t ~ (b)) + Bi(wwi(2)
+B2(p)u(t) @)
ei(t) = C(u)x(?)
ext) = u(®)
y(t) = Cy(p)x(t) + wa(t),

where p = [p1, p2, -+, pr] € P,

A(p) = 2ﬂi(z(t))Ai, Ad(u)=:21ui(2(t))Ad,-,-
Bi(p) = i;/u(Z(t))Bl“ B2(u)=i}m(2(t))32“
O = Lm0, Cu) =3 MG,

E. (N)

Zm(z(t))Ezi' ®)

As a fuzzy H® controller of the fuzzy system (1), we con-
sider the following output feedback controiler:

x(t) Ar(%(t) + Be(wy(t);  %(0)=0 (9
u(t) = Cr(pwk(t),

where matrix functions Ay (p), Bi(p), and Cg(p) are to be
determined and tuned on-line based on fuzzy operation, i.e.
Ai(p),Bg(p), and Cy(p) are function of membership func-
tions. From (7) and (9), we obtain the following closed-loop
system

(o= A@)C@) + Ai(p)x(t — d(t) + B(p)w(t)
e(ty = C(u)(t) (10)
¢t = 0, t<o,

where (t) = [x7(¢), XT()]", w(t) = [w{ (¢), w3 (£)]", and
e(t) = [e] (t),e3 (1)]".

A _ [ AW B2 (u)Cr(n)
Al = [ Be(w)Cy(p)  Ax(p) ]
A = [Afw o]",
B = Blé”) Bko(u)}, ()
- _ [cw o
e = |V ol |
We define a variable including all parameters of controller
N R X )
K= 5 an | 2

and we introduce the abbreviations:

A = [ A8 0] Buw =[P o |

0 0 0 0
Bo) = [P 1] cww=] ¥ 1],
D = | o o] cum =| ¥ 0],
Doyo(p) = (I) 3]7 (13)

then the closed-loop matrices of (10) can be written as

A(p,) = A.(p) + Boo(p)K(1)Coolps),
B(p) = Bio(p) + Boo(n)K(1)Dyo(n),
Cly) = Cio(p) +Doo(W)K(p)Coolp). (14)

Note that (13) involves only plant data and all matrices of
(14) are affine form of the controller data K(u). For a given
v, we define Lo gain -y-performance of the system (10) as the
quantity

T T
/0 ue<t>u?dt572[/o llw(6)]2dt], 1)

forall T > 0 and all w € Ly[0 77, where | - [| denotes the
Euclidean norm.

This paper addresses designing an output feedback fuzzy
H controller (9) for the system (7) such that the closed-loop
system is globally exponentially stable and achieves L2 gain
v-performance (Globally ES-y).

III. Stability and L, norm analysis
Lemma 1 : Consider the unforced system of (10). If there
exist matrices P > 0 and S;1 > 0, and positive scalars A and
« satisfying the following inequalities

<0

—_ k)

(16)

AW ™P+PA(W)+S+S: PA(p)
AT(wP -Su

for all i € P, where S is defined in (2) and

2 _ S11 0 & aI 0

s = [ , 0],51_[0 0], an
(l_ﬂ)sllv

wn
=
Il
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then the equilibrium of the unforced system of (10) is globally
exponentially stable.
Proof: Define a Lyapunov functional

t

V(e t) = cT(O)PC(E) + /

x(T)TSux(T)dT, (18)
t—d(t)

where P > 0 and S11 > 0. Then there exist scalars 1 > 0
and 2 > 0 such that 61]|¢||* < V (¢, ) < 8)|C||?. If there
exists scalar @ > 0 such that V(¢,t) < —al|x]]?, then the
unforced system of (10) is globally exponentially stable [19].
From assumption (2)

V(¢ 1) < TP + T PR + x(8)TS1x(t)
= x(t — d(t))"Sux(t — d(t))
= Va(c,t).‘ 19)

By using the Schur complement[20], the condition V,(¢,t)
< —a|x||? for all 4 is equivalent to (16). |

Lemma 2: Consider the system (10) and let v > 0 be a given
scalar. If there exist matrices P > 0 and S11 > 0, and positive
scalar A and « satisfying the following inequalities for all 4 €

P

AWTP+PA()+S5+581 PAi(y) PB(p) CT(y

AT(wP —Su 0 0
BT(M)P 0 - | 0
C(u) 0 0 -1
<0, (20)

where S, Sl, and S, are given by (17), then the correspond-
ing closed-loop system (10) is globally exponentially stable and
achieves L2 gain y-performance for all w(t).

Proof: The matrices P > 0 and S;; > 0, and positive
scalars A and o satisfying (20) also satisfy the inequalities (16).
Using a Lyapunov functionals (18), (19) and following condi-
tion

Ja(t) := Va(¢,t) + €T (Me(t) — ¥’ wi(t)w(t) <0, (1)

inequality (20) is obtained. Since V (x(T')) > 0, the condition
@1y implies [ |le(®)|2dt <~*[f w(t)||2dt]. |

IV. Fuzzy model-based robust H> controller
design

By applying the result of lemma 3.2, we present a sufficient
condition of the existence of fuzzy H* controllers for the T-S
fuzzy model (7) and explain how to construct H*° controllers.

Definition 1: Given the system (7) and v > 0. The Glob-
ally ES-y problem is solvable if there exist a finite dimensional
controller (9) and matrices P > 0 and S;; > 0, and positive
scalars X and « satisfying the inequality (20) for all 4 € P.

Using the notations of (12) and (13), define the left-hand side
of inequality (20) as

G(p) = ®(p) + SI()K()OT (1)
+O(WK” (" (=7, (22)

where
¥ = Diag(P,LLI),

O(p) = [Bao(p) 00 Dy()]7,

(1) = [Coo(w) 0 Dyo(u) 0], (23)
and

211(4) PAi(p) PBio(n) Chon)
"=l gioe o o1 o |

Cio(p) 0 0 -1
where

ou(p) = AJ(WP+PA(m)+S+S81. (249

Now, define matrices IT | (p) and ©; (i) such that for all

p, I ()I(p) = 0, ©F (1)O () = 0, and [T(g), ML (1)),
[©(p), ©® L (p)] are full column rank. Then

I 00 0 0 0 —Bap
00I 000 0
() = |00 0TI 00 0 ,
000 0TIO0 0
|00 0 0 0 I 0
(I 0 0 0 -CI(pw) 0 0©
00 I 0 0 0 0
oT(w = 0 0 0 I 0 0 0| @5
0000 0 I o
[ 00 0 0 0 0 I

Since both IT (1) and @ 1 (p1) are full column rank for all
w € P, itis clear that if G(yz) < 0, then OF ()G (1)@ 1 (1)
< 0and T () 'G(p) X I (k) < 0, which is equiva-
lent to

M7 ()27 @ ()= ML () <0, (26)
ol(weWe.(p <o, @7

forallpy € P.

Theorem 1: Given the system (7) and v > 0, Globally ES-
~ Problem is solvable if and only if there exist matrices X (€
R") > 0and Y(€ R™) > 0 satisfying following inequalities
forall 4 € P,

A(p)  Aa(p) Bi(w) YCT(p) Y
Ag (#) -Su 0 0 0
BT (1) 0 -1 0 0
C(wY 0 0 -1 0
Y 0 0 0 —(S11 +al)™*
<0, 28)
T(u)  XAg(u) XBi(w) C” ()
A; (X  -Sn 0 0
Bf(WX 0 -7’1 0 <0 @
C(p) 0 0 -1

X I
[I Y]>0, (30)
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for some martix S11 > 0, and positive scalars A and o, where
A(p) = YAT(p) + A(W)Y —B2()Bz (), G
D(p) = A(p) X + XA(p) + Si1 + oI — 4 CY (1) Cy ().

Furthermore, one n-dimensional, strictly proper controller
that solves the feedback problem is defined as:

Ap(p) = Ap) —¥'Z7Cy (1)Cy(p) — Ba()B3 ()Y

7B (B (1) YT + Au(w)ST AL ()Y T
—Z7 H(w), (32)

Bi(p) :==1°27'C; (n), Cip):=-Bi (Y™,
where Z := X — Y ! and
H(p) = —[Y 'A(u) + AT ()Y ™" =Y ' Ba(p)BE (1) Y

+AL()STAT ()Y + CT(W)C () + S11 + o]
+Y (7B ()BT (p) + ATTHHT. (33)

Proof: (=) Let P € RM®T™X(n+m) pe the positive defi-
nite matrix that satisfies the Lemma 3.2. Similarly to the proof
procedure of [?], we define Q := P~ !and partition P as

[ X X [TY Y

where X, Y € R™" and X3,Ys € R™*™. By the ma-
trix inversion lemma, it follows that X — Y ! > 0, which is
LMI in equation (30). From (26) and (27), carrying out the al-
gebraic manipulations, it can readily be seen by taking Schur
complements of the resulting expressions in (26) and (27) that
the conditions (28) and (29) are satisfied.

(<) We verify that the controller given in (32) satisfies the
Globally ES-y problem using

X —-X-Y!
P.= Xy ;_Y_l)]>o. (35)

‘We redefine the left-hand side of inequality (20) as
T(p) :=AT(WP +PA(u) +S+5: + CT(w)C(w)
+77PB(u)BT (1)P + PA, ()81 AT (WP, (36)

where the closed-loop matrices A, A 1 B and € are defined
in (11). Partition Y into n x n blocks Y11, Y12, and Y 39.
Define a transformation

(1o
T'_{II]’ (37

and transformed state-space data

A(p) =
C(p)

P(p) := TTP(u)T, S:=T7ST, S,:=T7S,T.

T'A(R)T, B(u) =T 'B(n),
C)T, Ai(p):=T 'Ai(p), (9

Ii

Then TTY (u)T < 0 can be written as

AT(W)P + PA() +S+S; + CT()C(w)
+yPPB(w)BT (n)P + PA (WS AT (1)P < 0. (39)

Note Y(p} < 0 if and only if TT Y ()T < 0. Denote
the left-hand side of (39) as Y and partition it into blocks
Y11, Y12, T2 € R™ ™. Using the controller (32), it can be
shown that

‘i-( ) _ —H(/-”) —H(ll‘) . (40)

Tl HE) Yo - H(w)

Using the Schur complement, ¥ (1) < 0 is equivalent to (28)
and (29). [ |

Theorem 4.1 is existence condition of robust H° control for
the global fuzzy model. It is not easy to find the matrices X and
Y from the global fuzzy model. From theorem 4.1, we derive
the following condition, which can be expressed for each rule
of fuzzy model.

Theorem 2: Consider the system (7) with assumption (2).
Then the Globally ES- problem is solvable, if there exist com-
mon matrices X > 0, Y > 0, S1; > 0 and positive scalars 5,
&, A satisfying the following matrix inequalities:

P, <0, 1=1,2,..,7,

¥; +¥;; <0, i<j<m, 41)
Q,; <0, i=1,2,..,7,
Qi; +2; <0, i<j<r, 42)
X I
-~ | >0. 43
[ 1Y ] 2 “3)
In here
Ai; By YCT Y Y
B'fi —51 0 0 0
;= CY 0 -1 0 o ) 44
Y 0 0 -8 0
Y 0 0 0 ~a 11
L I XAgy, XB,; ]
=&l 0 0 0
Q;=| AIX o -a-p8u o o |, @y
BT X 0 0 -~I 0
C; 0 0 0 -l
where
Aij = YAT +AY —2ByBf +(1-8)7"Aq,S1'AT

T; = XA +ATX+8, -45C{.Cy,. (46)

Furthermore, positive definite matrices X, Y, S11 and posi-
tive scalars «, <y are given by

X = AX, Y=X1Y, Si;; =S,
a = A&, =), @7
and a suitable controller is expressed in (32). |

Proof. The inequality (28) and (29) of Theorem 4.1 are
equivalent to '

YAT (1) + A(p)Y — Ba(1)B] (1)
+(1-8) " Aa(w)ST AT (1) + 7B (W) BT (1)
+YCT(W)C()Y +YSuY +aYY <0, (48)
XA(p) + AT(W)X + 81 + ol — v°C (1) Cy (1)
+(1 -8 XAI (0SS AT (1)X
+772XB1 ()BT ()X + CT(u)C(u) <0. (49
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First, multiply A to (48) and A™! to (49). Next, let X =
ATX, Y =AY, 8 = 2A718, 8 =2""a,and 5 =
A~'~4% Then, using Schur complement and notation (8), in-
equalities (48) and (49) are equivalent

DD i) (a(2) ¥y <0,

i=1j=1

DD (=t (2()2 < 0. (50)

=1 j=1

Inequalities (50) can be also written as
> pala(t))pi(a(t) ¥is
i=1

+ 3 w2 (2O) (T + ¥5) <0,
i<y

Z pi (2 () s (2(2)) Qi GH

+ ) ma(2() s (2(8))(R5 + Q) < 0.
i<y

From (51), we get (41) and (42). [ |

Note that the inequality (41) is an LMI for Y, S;;' and
¥, @&, A and inequality (42) is an LMI for X, S11 and ¥, G, A
However (41) and (42) are not LMIs in terms of variable Si;
simultaneously. Thus we present a constructive algorithm for
finding solution of the above nonconvex problems. The proce-
dure is summarized as follows:

[Procedure]

Step 1: Find the regions

D.={Su|¥>0,7>0,&>0, A>0, (41)} -(52)
Step 2: Find the regions
D, = {Su|X>0,7>0,a>0,A>0, (42)} (53)
Step 3: Obtain the intersection of D, and D,
D,=D.nD, (54
Step 4: Compute X, Y and &, 4, A suct that
_min [trace(¥) + trace(A)] (55)
S511€D,
subject to  (41) — (43)

Step 5: Compute positive definite matrices X, Y and posi-
tive scalars a, -y from (47)

Step 6. Construct finally controller from (32) with
X,Y,a,vand A

Remark 1: In step 3, the existence of the set D, does not
imply that the matrix inequalities, (41)-(43), are solvable, but a
necessary condition for the solvability of (41)-(43).

Remark 2: In step 4, the minimization of (55) is not con-
vex problem in term of Si1. However, it is not difficult to find
the minimum 4 + X\ because the computation can be executed
within the searching region of 17 in step 3.

V. Design example
We will design a fuzzy H® controller for the following non-
linear system;

#1(t) = —0.1125z1(t) — 0.0125z (¢ — d(t)) — 0.02z2(2)
—0.67z3(t) — 0.1z3(t — d(t))
—0.005z2(t — d(t)) + w(t) + u(t)

T2(t) z1(t), y(t) = z2(t)

ety = x2At), ext)=nu(t),

where time-varying delay is
d(t) = 4 + 0.5c0s(0.9¢).

The purpose of control is to achieve closed loop stability and
to attenuate the influence of the exogenous input disturbance
w(t) on the penalty variable {e] () e (t)]”. It is also assumed
that z2(t) is measurable and

1 (t) € [-1.51.5], =z2() € [-1.51.5].

Using the same procedure as in [?], the nonlinear term can be
represented as

~0.67z3(t) = M1y -0 - z2(t) — (1 — M11) - 1.5075z2 (£).

—0.1z3(t—d(t)) = M -0-za(t —d(t))
—(1 — M11)-0.225 - zo(t — d(2)).

By solving the equation, M, is obtained as follows:

M (aa(0) =1 - 22,
3
Miz(z2(8)) =1~ Mu(z‘z(t)) = 295"

M1 and M2 can be interpreted as membership functions of
fuzzy set. By using these fuzzy sets, the nonlinear system can
be presented by the following uncertain T-S fuzzy model

Plant Rule 1:

IF z,(t) is My, THEN

x(t) = A1x(t) + Ag, x(t — d(t)) + By, w(t) + B2, u(t)
y(t) = Cy,x(t)

e1(t) = Cix(t), e2(t) = u(t)

Plant Rule 2:
IF z(t) is My; THEN
x(t) = Aax(t) + Ay, x(t — d(¢)) + Br,w(t) + Ba,u(t)
y(t) = Cyx(t)
e1(t) = Cax(t), e2(t) = u(t),

where

x(t) = [z(t) w217,
-0.1125 —0.02

S Bt

—0.0125 —0.005 }

A"":[o 0
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A, [ —0.1125 —1.527 ]’
1 0
—-0.0125 -0.23
Adz = [ 0 0 ] ’
Bi;, = By, =[10]7, By, =By, =[10]",
Cyy = Cp=[01], C;=C:=[01]

Let S11 = kI, for simplicity. From step 1, step 2, and step 3
of procedure, we can obtain the set

D, = {11811 = kI, 107° < k < 2.93 - 10%}.
The minimization of step 4 is attained at S = 0.1926

and the minimum value of -y is 4.66. The values of X, o and
X,Y, 511 are

A = 43465, «=0.2946-107°
S, - [ 0.837 0
v 0 0837 ]’
X = [ 6.5588  —3.7902
| —-3.7902 11.7482 |’
v = 0.5140 —0.1811
~ | -0.1811  0.3146

The simulation results for the nonlinear systems are shown in
Fig. 1. For these simulations, the initial value of the states are
z1(0) = —1 and z2(0) = —1.2. And The disturbance signal
w(t) is defined by

w(t) = 0.3, 2sec<t< 3sec
10, otherwise.

o By

State

Time(sec)

05+

Time(sec)

Fig. 1. The simulation results of nonlinear systems.

The designed fuzzy H* controller stabilizes the the nonlin-
ear system and attains disturbance attenuation effect.

V1. Conclusion

In this paper, we have developed output feedback fuzzy
H*® controller design method for nonlinear systems with time-
varying delayed state. We have obtained sufficient conditions
for the existence of fuzzy H°® controller such that the closed-
loop fuzzy system is globally exponentially stable and achieves
a prescribed level of disturbance attenuation. The derived suffi-
cient conditions are not LMI in all variables. Thus we presented
a constructive algorithm for finding solution of the nonconvex
problems. The controller is directly obtained from the derived
LMI condition. The resulting controller is nonlinear and tuned
on-line based on fuzzy operation. Through an example, the va-
lidity was demonstrated.
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