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Abstract. Fuzzy optimal control is considered. An op-
timal sequence of controls is sought best satisfying fuzzy
constraints on the controls and fuzzy goals on the states
(outputs), with a fuzzy system under control. Control over
a fixed and specified, implicitly specified, fuzzy, and infinite
termination time is discussed. For computational efficiency
a small number of reference fuzzy staters and controls is to
be assumed by which fuzzy controls and states are approx-
imated. Optimal control policies reference fuzzy states are
determined as a fuzzy relation used, via the compositional
rule of inference, to derive an optimal control. Since this
requires a large number of overlapping reference fuzzy con-
trols and states implying a low computational efficiency,
a small number of nonoverlapping reference fuzzy states
and controls is assumed, and then interpolative reasoning
is used to infer an optimal fuzzy control for a current fuzzy
state.
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1. INTRODUCTION

As opposed to the usually assumed approach to fuzzy con-
trol, which boils down to the encoding of a set of (linguis-
tic) control rules known from experience by the (human)
operator, a different one, more consistent with the spirit
of control, was advocated in Kacprzyk’s (1983a) book: the
temporal evolution of a fuzzy system under control, the
fuzzy constraints and the fuzzy goals are assumed known,
and an optimal sequence of controls is sought. The opera-
tor’s knowledge concerns how the system behaves, and the
fuzzy controls and states represent requirements on how
control should proceed.

That book appeared in a “bad” time, long before the
recent eruption of interest in fuzzy control. However, it
may lead to a new “generation” of fuzzy control (optimal
fuzzy control) (cf. Kacprzyk, 1992). Kacprzyk’s (1983a)
book concerns the following problem. U = {Cy,...,C,}
is a set of fuzzy controls defined in U, X= {5y, ..., Sp}
is a set of fuzzy states (outputs) in X, the fuzzy system
under control is governed by X1 = F(Xt, U;), where X,

Xiy1 € X are fuzzy states at time (control stage) ¢ and
t+1,and U, € U iscontrol at ¢, t =0,1,..., N—1; N is
the termination time (planning horizon). Next, px(U,) is a
fuzzy constraint on Us, prme: (Xe4n) is a fuzzy goal on Xyy,,
and pp(. | .) is a fuzzy decision; G and T account for the
fuzziness of X, and U, as, e.g., . pzi (X)) = 1= d( X4,
G**1) where d(.,.) is some distance; and similarly for C'.

We seek an optimal sequence of fuzzy controls U, ...,
Up_ such that

wo(Us, ... Uy i | Xo) =
=, max up(Us,y ... .Uncr | Xo) =
0 N-1

o (Bzt (V) A pgent (X)) (1)

Problem (1) leads to various problem classes which may
be classified, e.g., due to: (1) the termination time: (a)
fixed and specified in advance, (b) implicitly given (by en-
tering a termination set of states), (c) fuzzy, and (d) infi-
nite; and (2) the system under control: (a) determin-
istic, (b) stochastic, and (c) fuzzy. The cases of all ter-
mination types, and a fuzzy system under control will be
discussed.

In all these problems the numerical efficiency requires
finite, and relatively small numbers of fuzzy states and con-
trols. Since in general these numbers are very high (the-
oretically infinite), we assume some reference fuzzy states
and controls by which all fuzzy states and controls are ap-
proximated in the course of the algorithms. Then, we de-
rive optimal policies relating optimal reference fuzzy con-
trols to reference fuzzy states. These policies are repre-
sented by fuzzy relations which are in turn used, via the
compositional rule of inference, to determine an optimal
fuzzy control (not necessarily reference) for a current fuzzy
state (not necessarily reference). For this procedure to give
meaningful results, there should be a relatively large num-
ber of overlapping reference fuzzy states and controls. This
is however harmful to the numerical efficiency of the opti-
mal control algorithms used! We assume therefore a small
number of nonoverlapping reference fuzzy states and con-
trols, and then use an interpolative (analogical) reasoning
scheme to infer an optimal fuzzy control for a current fuzzy
state.
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2. CONTROL WITH A FIXED AND SPECIFIED TER-
MINATION TIME

The problem is (1), and can be solved by dynamic program-
ming (Baldwin and Pilsworth, 1982) which boils down to
seeking Ug, ..., U¥_, such that

1o(Us, . Uny | Xo) =
= ALy(max((max(pu, , (ue-1) A e (wea)) A

A max(max(px,(: A pet(241)))) ()
whose dynamic programming recurrence equations are

tgn (Xw) = maxzy(pxy(an A pey(zn))
pgn-i(Xn-i) = maxyy_ (maxuy_, (puy_ (un-i)A
A ton=i(un=i)) A pgn-in (Xn-is1))
FXpoiys (ENi1) = (3)
= maer-x(ma‘XuN-i(#UN-i(uN-‘i)A
A Xy (EN=is1 | TN un-i))A
A pxy_(TN-i))
i=1,...,N

This may be solved but the ga. (X,)’s are to be specified for
all X,’s whose number may be huge (and similarly maxy, _,
is to proceed over a large set of U,-;’s). A natural ap-
proach (Kacprzyk and Staniewski, 1982) is to use some
prespecified reference fuzzy states and reference fuzzy con-
trols, denoted U, € U = {Cy,...,C;} C U and X4y €
X ={5;,...,5.} € X, and to express all U,_’s and X,’s
by their closest reference counterparts (fuzzy matching!).
This is used to solve (3), and will be used throughout this
paper.

The solution of (3}, an eptimal conirol policy, a}, such
that U, = a}(X:), t = 0,1,...,N — 1, is represented by
“(IF X, =S; THEN U,=C,) ELSE ... ELSE IF(X,=
S, THEN U, = C.,)",Cn,...,Cy» € U equated with a
fuzzy relation R in X x U. Thus, for a current X, the U;
sought is determined by the compositional rule of inference
U: = )(t o R.

Unfortunately, this dynamic programming scheme is
not efficient. Moreover, for the compositional rule of in-
ference to work properly there should be a high number
of overlapping fuzzy controls and states. This is however
harmful to the computational efficiency of dynamic pro-
gramming! This contradiction will be resolved by assum-

ing a small number of nonoverlapping fuzzy states and con-
trols, and using then interpolative reasoning as considered
in Section 6.

Simpler and more efficient than dynamic programming
sketched above is an earlier branch-and-bound approach by
Kacprayk (1978a, 1979): we seek Uy, ..., Uy_, such that

(s, .

Oyl Ny

AT | Ko = max (uea(To)n
Az (XA A pgn-1(Un-a) A g (X)) (4)

The solution of (4) is based on the following property of " A”
(and of many other t- norms too): if pp(Us, -..,Uk | Xo)
:Af;ol(}tat(—Ut:’/\/lat+l(yt+1), then N — 1>k > = up(Us,
ey UN—I ‘ XO)S ,UD(U(]7 ey Uk ‘ XO)SuD(UQ, ...,U{ |
Xo). That is, by “adding” next controls we cannot increase
the value of pp(. | .). The branching is via the [/;'s and
the bounding is via the up(To, ..., U, | Xa)'s.

An efficient branching requires a small number of refer-
ence fuzzy controls, Cy, ..., Cy. As a solution we obtain
an optimal policy U; = a*(X,) which is determined as a
fuzzy relation, and for a current (not necesarily reference)
fuzzy state the optimal control is determined via the com-
positional rule of inference. And again, there should be suf-
ficiently many, overlapping reference fuzzy states and cont-
rols to obtain meaningful results. For numerical efficiency
we should however have as few as possible, nonoverlapping
reference fuzzy states and controls. Then, interpolative
reasoning can be used.

3. CONTROL WITH AN IMPLICITLY SPECIFIED TER-
MINATION TIME

The termination time N is now when the system enters for
the first time a terminating set of states, X7 ¢ X. Suppose

— — —_ = — =T —
that_-/_Y = {Sl, ey Sp, SP+17 vy S,} and X~ = {Sp+1,
.5

We seek Uy, ..., Ug_, such that

pp(Ugs- - Ukoy | Xo) =
=_max (uz(Uo|Xo)A...
Uo U1

o AUk | X)) A (X)) (5)

where X € X7 and X, € X — X7, Using the approx-
imation by reference fuzzy controls and states, (5) may be
solved using: an iterative approach, a graph-theoretic ap-
proach, and a branch-and-bound approach (cf. Kacprzyk,
1983a). The first is related to the case of an infinite termi-
nation time (cf. Section 5), the second is not operational,
and the last is simple and efficient ~ analogous to that dis-
cussed in Section 3.

This model may be very useful, in particular for opti-
mizing the first part of the trajectory until a stable oper-
ation when the termination time is evidently unknown in
advance.

4. CONTROL WITH A FUZZY TERMINATION TIME

The idea of a fuzzy termination time (e couple of, some,
about ten, ... control stages) appeared in Fung and Fu
(1977) and Kacprzyk (1977, 1978a, ¢). 1t is given as a fuzzy
set, W, in V= {1,...,K,K +1,....N}; uw(t) € [0,1]
represents how “good” t is as the termination time. The
process should terminate at some M € suppV = {t € T :
pw(t) >0 M e {R, K +1,...,N} is assumed.

We seek an optimal termination time M~ and U, ...,
T+ such that

up(Tgy - Uy

Xo) = U A ...
0) o (rz (Vo)

o A bigaes (T a) A g (M) e (K ))) (6)

For solving (6), Kacprzyk’s (1977, 1978a, ¢) dynamic prog-
ramming algorithm similar to (2), and Kacprzyk’s (1978b,
1979) branch-and-bound scheme (cf. Section 3) may be
used.

In the former case, we devise two sets of recurrence
equations:
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ﬁéM(YM’ M) = __

= maxzy (Bxp (24) A pw(M) g (X))
_C';M—i(—X_M~i7 M) =

= maxUM_((rna.xuM_' (/‘UM_i(_sz—i)A

A P (UM_,‘)) A FaM-in {(X M-ir1) M)) (7)
#YM—i+1(zM—‘.+1) =

= ma‘xl‘M—i(ma‘X"M—i(“uM—u(uM’i)A

A By (EM—int | TNty un—i))A

A B0y (M=)
i=1,..,.M-K+;M=K,...,N

yEK-l (7}(_1) = mhz}x ﬁé}(—x (YK—X, M) (8)

pigre-i-1 (X —im1) =
= maxg,__, (maxu_,_, (4g,_,_, (urk-i-1)A
A ﬂEK—i—l(ﬁK_,’_l)) A [tEK—i(YK_,’))

Bx e (TK-i) = )
= maxey_,_; (MaXu_,y (7, _,_, (WK-i-1)A
Apg, (Troi | TKoimts Uk —ic1))A
Abx e, (TK=i-1))

i=1,.. K—1

We obtain optimal policies U, = a;(X), and all the pre-
vious remarks on the number of reference fuzzy states and
controls and on interpolative reasoning are also valid here.

5. CONTROL WITH AN INFINITE TERMINATION
TIME

When the process is to proceed over a long time and is
low-varying, with the goal just to maintain some (stable)
conditions, it may be expedient to assume an infinite ter-
mination time and use some specific apparatus proposed
first by Kacprzyk and Staniewski (1982, 1983) (cf. also
Kacprzyk, 1983a).

We seek an optimal stationary policy a, such that

pp(az, | Xo) = max uplac | Xo) =
= lim Ao (pz(a | X) A pg(Xea))  (10)

where b > 1 is a discount factor expressing a higher impor-
tance of earlier control stages.

A policy iteration algorithm was given by Kacprzyk and
Staniewski (1982, 1983) to solve problem (10) which, via
the approximation by reference fuzzy states and controls,
was transformed into one with an auxiliary finite state de-
terministic system. Thus, if A(.) means this approxima-
tion, the auxiliary deterministic system representing the
fuzzy system is given by X1 = A(F(j(l, Ut = 0,1,...,
anﬂ, e.g, l‘E(Ut | Xo) = e((C(X),U,) and pg(X,) =
e(G,X,), where e(.,.) is a degree of equality of two fuzzy
sets.

We seek an optimal stationary policy a, such that

#play,) = max A}Enoo NLob (uz(a ) Xo) A pg(Xerr)) (11)
An a’, solving (11) is determined by a policy iteration type
algorithm (Kacprzyk and Staniewski, 1982, 1983) whose

essence is:

Step 1. Choose an arbitrary ac = (a,a,..-)
Step 2. Solve in pp(@e 13, i=1,...,7

#p(ac | ?,) =

= pz(a(50) | 5:) A ug(A(F(S:i,a(5:))) A

Abup(ae | A(F(S:,a(55)))) (12)
Step 3. Improve a,, i.e. find a z* maximizing pz(2(S;) |
3:) A pz(A(F(S:, 2(S)))) A bup(ac | ACF(S:, a(52))))-
Step 4. If 2* found in Step 3.is the same as the previous, it
is an optimal stationary policy sought. Otherwise, assume
a5 = 2" and return to Step 2.

We obtain (in a finite number of steps!) an a, for the
reference fuzzy states only. Needless to say that the num-
ber of them (and of reference fuzzy controls) has a decisive
impact on the efficiency of the algorithm. Thus, as in pre-
vious sections, we assume a small number of reference fuzzy
states and fuzzy controls, solve the problem, and then use
interpolative resoning.

6. INTERPOLATIVE REASONING IN THE DERIVA-
TION OF OPTIMAL CONTROLS

In all the above cases there is a conflict between a large
number of reference fuzzy controls and states required for
obtaining meaningful results via the compositional rule of
inference, and a small number of them required for the
numerical efficiency.

Since for real problems the efficiency may be decistve,
we may be forced to assume a small number of nonover-
lapping reference fuzzy controls and states, and the situ-
ation will be: we obtain an optimal policy a} stating “IF
X, =5 THEN U; = Cy ELSE ...ELSE IF X, = §;
THEN U, = Cy ELSE IF X, = S;yy THEN U; = Cyis1)
ELSE ...ELSE IF X, = S, THEN U, = C.,”. The prob-
lem is the implementation of a}. Suppose that we wish to
determine U} for a current X, not a reference one. Let X,
be a fuzzy number between the two reference fuzzy states
5, and S;,. We seek therefore an U corresponding to X,
via this a;. Notice that since X, is not a reference one, U}
will not be in general a reference one either.

The determination of U} is meant here, assuming a rep-
resentation by triangular fuzzy numbers, as the determi-

nation of the mean value and width. It is reasonable to
require U; to be similar (close) to one of these optimal Cy
and Clyi41) corresponding to S; and S;.

The idea of our approach is as follows. The first prob-
lem is to determine the mean value of the fuzzy optimal
control sought. We apply here Kdczy and Hirota’s (1992)
approach whose essence may be expressed as

d(5:, X)/d(Xe, Sisa) = (T, UD)/A(U;, Triaany) - (13)

where d(.,.) is a distance between two fuzzy sets. The sense
of (13) is that the relative position of U;" with respect to its
closest reference counterparts should be the same as that
concerning X, and its reference counterparts.

The second problem is to determine the width of U;.
The reasoning is that the lower the number of reference
fuzzy states and controls, the less precise is the available in-
formation. Hence, the fuzzier (of a larger width) Uy should
be. For instance, we can use a formula
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w(U7) = §10(5) + 0(Seer)+

+ ®(X;) + W(Cy) + B(Cyisn)] (14)

where W(.) is a relative width (related to the universe of
discourse of the fuzzy states and controls, and the simplest
arithmetics mean (14) can be replaced by another formula
expressing the above rationale.

Moreover, in addition to the right-hand-side terms of
14) which express the fuzziness of the reference fuzzy con-
trols and states involved, it may often be expedient to in-
clude some term(s) accounting for the “overall fuzziness” of
the control problem considered. This requires a new con-
ceptual approach which will be presented in a sunsequent

paper.
7. CONCLUDING REMARKS

Models of optimal fuzzy control were discussed. To ef-
ficiently solve these control problems, a small number of
reference fuzzy states and controls was assumed, and opti-
mal policies were derived. To make it possible to use these
policies not necessarily for the reference fuzzy states and
controls, an interpolative reasoning scheme was proposed
which determines the position of a (non-reference) fuzzy

optimal control sought and its width (fuzziness).
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