Proceedings of the Korean Institute of Intelligent Systems Conference (한국지능시스템학회:학술대회논문집)
- 1993.06a
- /
- Pages.1270-1273
- /
- 1993
INTERPOLATIVE REASONING FOE COMPUTATIONALLY EFFICIENT OPTIMAL FUZZY CONTROL
- Kacprzyk, Janusz (Systems Research Institute, Polish Academy of Sciences)
- Published : 1993.06.01
Abstract
Fuzzy optimal control is considered. An optimal sequence of controls is sought best satisfying fuzzy constraints on the controls and fuzzy goals on the states (outputs), with a fuzzy system under control Control over a fixed and specified, implicitly specified, fuzzy, and infinite termination time is discussed. For computational efficiency a small number of reference fuzzy staters and controls is to be assumed by which fuzzy controls and stated are approximated. Optimal control policies reference fuzzy states are determined as a fuzzy relation used, via the compositional rule of inference, to derive an optimal control. Since this requires a large number of overlapping reference fuzzy controls and states implying a low computational efficiency, a small number of nonoverlapping reference fuzzy states and controls is assumed, and then interpolative reasoning is used to infer an optimal fuzzy control for a current fuzzy state.
Keywords
- fuzzy control;
- fuzzy optimal control;
- fuzzy dynamic system;
- fuzzy inference;
- analogical reasoning;
- interpolative reasoning.