• Title/Summary/Keyword: function algebra

Search Result 152, Processing Time 0.025 seconds

On Near Subtraction Semigroups (Near Subtraction Semigroups에 관한 연구)

  • Yon Yong-Ho;Kim Mi-Suk;Kim Mi-Hye
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.406-410
    • /
    • 2003
  • B. M. Schein([1]) considered systems of the form (${\Phi}$; ${\circ}$,-), where ${\Phi}$ is a set of functions closed under the composition "${\circ}$" of functions and the set theoretic subtraction "-". In this structure, (${\Phi}$; ${\circ}$) is a function semigroup and (${\Phi}$;-) is a subtraction algebra in the sense of [1]. He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. Also this structure is closely related to the mathematical logic, Boolean algebra, Bck-algera, etc. In this paper, we define the near subtraction semigroup as a generalization of the subtraction semigroup, and define the notions of strong for it, and then we will search the general properties of this structure, the properties of ideals, and the application of it.

  • PDF

CONDITIONAL FIRST VARIATION OVER WIENER PATHS IN ABSTRACT WIENER SPACE

  • CHO, DONG HYUN
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.1031-1056
    • /
    • 2005
  • In this paper, we define the conditional first variation over Wiener paths in abstract Wiener space and investigate its properties. Using these properties, we also investigate relationships among first variation, conditional first variation, Fourier-Feynman transform and conditional Fourier-Feynman transforms of functions in a Banach algebra which is equivalent to the Fresnel class. Finally, we provide another method evaluating the Fourier-Feynman transform for the product of a function in the Banach algebra with n linear factors.

CONTINUITY OF AN APPROXIMATE JORDAN MAPPING

  • Lee, Young-Whan
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.505-509
    • /
    • 2005
  • We show that every $\varepsilon-approximate$ Jordan functional on a Banach algebra A is continuous. From this result we obtain that every $\varepsilon-approximate$ Jordan mapping from A into a continuous function space C(S) is continuous and it's norm less than or equal $1+\varepsilon$ where S is a compact Hausdorff space. This is a generalization of Jarosz's result [3, Proposition 5.5].

GRADED BETTI NUMBERS OF GOOD FILTRATIONS

  • Lamei, Kamran;Yassemi, Siamak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1231-1240
    • /
    • 2020
  • The asymptotic behavior of graded Betti numbers of powers of homogeneous ideals in a polynomial ring over a field has recently been reviewed. We extend quasi-polynomial behavior of graded Betti numbers of powers of homogenous ideals to ℤ-graded algebra over Noetherian local ring. Furthermore our main result treats the Betti table of filtrations which is finite or integral over the Rees algebra.

SHEAF-THEORETIC APPROACH TO THE CONVOLUTION ALGEBRAS ON QUIVER VARIETIES

  • Kwon, Namhee
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.1-15
    • /
    • 2013
  • In this paper, we study a sheaf-theoretic analysis of the convolution algebra on quiver varieties. As by-products, we reinterpret the results of H. Nakajima. We also produce a refined form of the BBD decomposition theorem for quiver varieties. Finally, we study a construction of highest weight modules through constructible functions.

THE CONSTRUCTION OF A NON-UNIMODAL GORENSTEIN SEQUENCE

  • Ahn, Jea-Man
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.443-450
    • /
    • 2011
  • In this paper, we construct a Gorenstein Artinian algebra R/J with non-unimodal Hilbert function h = (1, 13, 12, 13, 1) to investigate the algebraic structure of the ideal J in a polynomial ring R. For this purpose, we use a software system Macaulay 2, which is devoted to supporting research in algebraic geometry and commutative algebra.

A NUMERICAL PROPERTY OF HILBERT FUNCTIONS AND LEX SEGMENT IDEALS

  • Favacchio, Giuseppe
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.777-792
    • /
    • 2020
  • We introduce the fractal expansions, sequences of integers associated to a number. We show that these sequences characterize the O-sequences and encode some information about lex segment ideals. Moreover, we introduce numerical functions called fractal functions, and we use them to solve the open problem of the classification of the Hilbert functions of any bigraded algebra.

The Maximal Ideal Space of Extended Differentiable Lipschitz Algebras

  • Abolfathi, Mohammad Ali;Ebadian, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.117-125
    • /
    • 2020
  • In this paper, we first introduce new classes of Lipschitz algebras of infinitely differentiable functions which are extensions of the standard Lipschitz algebras of infinitely differentiable functions. Then we determine the maximal ideal space of these extended algebras. Finally, we show that if X and K are uniformly regular subsets in the complex plane, then R(X, K) is natural.

SEMI-NEUTRAL GROUPOIDS AND BCK-ALGEBRAS

  • Kim, Hee Sik;Neggers, Joseph;Seo, Young Joo
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.649-658
    • /
    • 2022
  • In this paper, we introduce the notion of a left-almost-zero groupoid, and we generalize two axioms which play important roles in the theory of BCK-algebra using the notion of a projection. Moreover, we investigate a Smarandache disjointness of semi-leftoids.