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CONDITIONAL FIRST VARIATION OVER
WIENER PATHS IN ABSTRACT WIENER SPACE

DonG Hyun CHO

ABSTRACT. In this paper, we define the conditional first variation
over Wiener paths in abstract Wiener space and investigate its
properties. Using these properties, we also investigate relationships
among first variation, conditional first variation, Fourier-Feynman
transform and conditional Fourier-Feynman transforms of functions
in a Banach algebra which is equivalent to the Fresnel class. Fi-
nally, we provide another method evaluating the Fourier-Feynman
transform for the product of a function in the Banach algebra with
n linear factors.

1. Introduction and preliminaries

Let Cy[0,T] be the space of all continuous paths x on [0,T] with
z(0) = 0 which is known as the classical Wiener space. The concept of an
L, analytic Fourier-Feynman transform for functions on this space was
introduced by Brue in [1]. In (3], Cameron and Storvick introduced an
L, analytic Fourier-Feynman transform, and in [12] Johnson and Skoug
developed an L, analytic Fourier-Feynman transform theories for 1 <
p < 2 that extended the results in [1, 3] and gave various relationships
between the L1 and Ly theories.

On the other hand, in [2], Cameron obtained the Wiener integral
of first variation of a function F in terms of the Wiener integral of
the product F with a linear factor. In [16], Park, Skoug and Storvick
found the Fourier-Feynman transform of the product of a function with
n linear factors from the Banach algebra & which was introduced by
Cameron and Storvick in [4]. In [9], Chang, Song and Yoo expressed
analytic Feynman integral of the first variation of a function F' in terms
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of analytic Feynman integral of the product of F' with a linear factor
on abstract Wiener space. And then, they derived the Fourier-Feynman
transform for the product of a function in the Fresnel class with n linear
factors.

In [7], Chang, Cho and Yoo introduced a concept conditional analytic
Feynman integral over Wiener paths in abstract Wiener space. And also,
in [10], Cho introduced the Banach algebra F(Cp(B); ») which is equiv-
alent to the Fresnel class, and he evaluated various conditional analytic
Feynman integrals of functions in certain classes which are all equiva-
lent to the Fresnel class, and then, investigated relationships between
analytic Feynman integral and conditional analytic Feynman integral of
functions in F(Co(B);u).

In this paper, we define the conditional first variation over Wiener
paths in abstract Wiener space and investigate its properties. Using
these properties, we also investigate relationships among first varia-
tion, conditional first variation, Fourier-Feynman transform and con-
ditional Fourier-Feynman transforms of functions in the Banach algebra
F(Co(B); u). Finally, we provide another method evaluating the Fourier-
Feynman transform for the product of a function in the Banach algebra
with n linear factors. This result over Wiener paths in abstract Wiener
space extends the result in [9].

Let (Q, A, P) be a probability space, let B be a real normed linear
space and let B(B) be the Borel o-field on B. Let X : (Q,A,P) —
(B,B(B)) be a random variable and let F' : Q@ — C be an integrable
function. Let Px be the probability distribution of X on (B,B(B)) and
let D be the o-field {X~1(4) : A € B(B)}. Let Pp be the probability
measure induced by P, that is, Pp(E) = P(FE) for E € D. By the def-
inition of conditional expectation there exists a D-measurable function
E[F|X](the conditional expectation of F' given X) defined on 2 such
that the relation

/ E[F|X)(w) dPp(w) = / F(w) dP(w)
E E

holds for every E € D. But there exists a Px-integrable function
defined on B which is unique up to Px-a.e. such that E[F|X](w) =
(Yo X)(w) for Pp-a.e. win . 9 is also called the conditional expectation
of F given X and without loss of generality, it is denoted by E[F|X](§)
for £ € B. Throughout this paper, we will consider the function % as
the conditional expectation of F’ given X.
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2. Wiener paths in abstract Wiener space

Let (H,B,m) be an abstract Wiener space([15]). Let {e; : j > 1} be
a complete orthonormal set in the real separable Hilbert space H such
that e;’s are in B*, the dual space of real separable Banach space B. For
each h € H and y € B, define the stochastic inner product (h,y)™~ of h
and y by

(h,y)~ = limp o0 271 (hy€5) (¥, €5),  if the limit exists;
Y= 0, otherwise,

where (-,-) denotes the dual pairing between B and B*([13]). Note that
for each h(# 0) in H, (h,-)~ is a Gaussian random variable on B
with mean zero, variance |h|?; also (h,y)™ is essentially independent
of choice of the complete orthonormal set used in its definition and fur-
ther, (h, Ay)™ = (Ah,y)~ = A(h,y)~ for all A € R. It is well-known that
if {h1, ho,- -+ ,hn} is an orthogonal set in H, then the random variables
(hj,-)~’s are independent. Moreover, if both h and y are in H, then
(h,y)~ = (h,y) where (-,-) denotes the inner product of h and y.

Let Co(B) denote the space of all continuous functions on [0, T] into
B which vanish at 0. Then Cy(B) is a real separable Banach space with
the norm ||z||cym) = suPp<t<r ||(t)||p. The minimal o-field making the
mapping z — z(t) measurable is B(Cy(B)), the Borel o-field on Cy(B).
Further, Brownian motion in B induces a probability measure mp on
(Co(B), B(Cp(B))) which is mean-zero Gaussian([17]). We can find a
concrete form of mp as follows. Let t = (t1,t2,- - ,tx) be given with
O=ty<ti<ta<---<tx <T. LetT;:IBk—ﬂBk be given by

T‘t-(xlax2’ e 7mk)

k
= | Vt1 — toz1,Vt1 — tox1 + V2 — tiza, - - >Z Vi — tj-1x;
i=1

We define a set function v on B(B) by

()

for B € B(B*). Then v; is a Borel measure. Let f;: Co(B) — B* be the
function defined by

f{:‘(m) = (2(t1), z(t2), - - , z(tk))-
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For Borel subsets By, Bs, -+ , By of B, ftfl(H?:l B;) is called the I-set
with respect to By, Bs,---, Bx. Then the collection Z of all I-sets is a
semi-algebra. We define a set function mpg on T by

k k
-1 -y .
mg | f7 H B; = v; H B;

Then mp is well-defined and countably additive on Z. Using Carathéodory
extension process, we have a Borel measure mp on B(Cy(B)).

A complex-valued measurable function defined on Cy(B) is said to
be Wiener measurable and a Wiener measurable function is said to be
Wiener integrable if it is integrable.

DEFINITION 1. Let F : Cyp(B) — C be Wiener integrable and let X :
(Co(B), B(Co(B)), mp) — (B, B(B)) be a random variable, where B is
a real normed linear space with the Borel o-field B(B). The conditional
expectation E[F|X] of F given X defined on B is called the conditional
Wiener integral of F' given X.

Now, we introduce Wiener integration theorem without proof. For
the proof see [17].

THEOREM 2 (Wiener integration theorem). Let = (t1,ty,--- ,tx) be
given with 0 = tg < t; <tg < --- < t, <T and let f : B* — C be a
Borel measurable function. Then

/ F(@(tr), 2(ta), -+ w(t)) dms(z)
Co(B)

k
= /k(foﬂ—'),(xhx?a“' ,CCk) d Hm ($1,$2,"‘ 7:Ek)>
B .
i=1

where by = we mean that if either side exists, then both sides exist and
they are equal.

A subset E of Cy(B) is called a scale-invariant null set if mg(AE) =0
for any A > 0. A property is said to hold scale-invariant almost every-
where (in abbreviation, s-a.e.) if it holds except for a scale-invariant
null set. Let F be defined on Cy(B) and let F*(z) = F()\_%a:) for A > 0.
Suppose that E[F?] exists for any A > 0 and it has the analytic extension
JY(F)on C4 = {A € C:Re X > 0}. Then we call J;(F) the analytic
Wiener integral of F' over Cy(B) with parameter X\ and it is denoted by

EA[F] = JL(F).



Conditional first variation over Wiener paths in abstract Wiener space 1035

Moreover, if for non-zero real ¢, E“*[F] has a limit as A approaches
to —iq through C,, then it is called the analytic Feynman integral of F’
over Cy(B) with parameter ¢ and denoted by

anfq
/ F(z)dmg(z) = ESYF] = lLim E\F].
Co(B) A——ig

Let 7: 0 =1ty < t; < - - <t =T be a partition of [0,T] and let z
be in Cy(B). Define the polygonal function [z] of z on [0,T] by

k
O 121 = DX ® [oltio0) + = (a(t) = a(ty-2)
j=1 J Tl

for t € [0,T]. For each = (€1, - ,&) € BF, let [f] be the polygonal
function of £ on [0, T] given by (1) with replacing z(t;) by &; for j =
0,1,---,k (& = 0). Note that both [z] : [0,T] — B and [£] : [0,T] — B
are in Cp(B).

The following lemma is useful to define the conditional analytic Wiener
and Feynman integrals. For detailed proof, see (7).

LEMMA 3. Let F be defined and integrable on Cy(B). Let X, :
Co(B) — B* be a random variable given by X,(x) = (z(t1),--- ,z(t))-
Then for every Borel measurable subset B of B*, we have

/ Ly @) dma(w) = / E[F(z - [a] + [€])] dPx. (€),
X7 (B) B

where Py, is the probability distribution of X, on (B*, B(B*)).

REMARK 1. Throughout this paper, unless otherwise specified, we
will denote Py, as the probability distribution of X, on (B*, B(B)).

By the definition of conditional Wiener integral (Definition 1) and
Lemma 3, we have

2)  EIFIX,)(¢) = B[F(z - [a] + [{])] for Px,-ae. &
For A > 0 let X)(z) = XT()\_%x) and for £ € B* suppose E[F*|X2](€)
exists. From (2) we have

BIFNX(E) = EIF( 2 (e ~ [2]) + [€)]
for Pxx-a.e. £ € B* where Py is the probability distribution of X2
on (BF, B(BF)). If E[F()\_%(m — [z]) + [€])] has the analytic extension

-

JY(F)(§) on C,, then we write
E“"[FIX)(€) = J(F)(E)
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for A € C,. E°"WA[F|X,] is a version of conditional analytic Wiener
integral. For non-zero real g, if the limit

lim E“™\[F|X,](€)
A——1ig

exists, where A approaches to —ig through C,, then we write

B [FIXC)(E) = lim ™ FX(E).

E°f¢[F|X,] is a version of conditional analytic Feynman integral.

3. First and conditional first variation over paths in abstract
Wiener space

In this section, we define first and conditional first variation over
Wiener paths in abstract Wiener space. And then, we investigate their
properties and relationships with Fourier-Feynman transform and con-
ditional Fourier-Feynman transform.

DEFINITION 4. Let F' be a Wiener measurable function defined on
Co(B) and let w € Cyo(B). The derivative

0
5L (@ +tw)le=o

for x € Co(B) if it exists, is called the first variation of F' at z in the
direction of w and denoted by

0
(SwF(.T) = EF(.’E + tw)lt:O-

DEFINITION 5. Let F' be a Wiener measurable function defined on
Co(B) and let F(- + =) be integrable for x € Co(B). Let w € Co(B), let
B be a real linear normed space and let X : Co(B) — B be a random
variable. Let Px be the probability distribution of X on (B, B(B)). For
z € Co(B), if the derivative

0
SEIF(+ 2+ )| X](©)lemo

exists for Px-a.e. £ € B, then it is called the conditional first variation
of F given X at z in the direction of w and is denoted by

SuBIFIX)(@,8) = S BIF(-+2 + tw)| X))o
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Suppose that, for some € > 0, 6, F(z + tw) and 6, E[F|X](z + tw, )
exist for |t| < e. Then we have

SuwF(z + tw) = %F(IE + tw + aw)|a=o

(3) - %F(x T ) e

0
= —8—tF(w+tw)

and, similarly, we have

4)  6LEIFIX](z +tw,€) = %E[F(- + o+ tw)| X](6).

The following theorem shows that the conditional first variation of a
function is essentially the conditional Wiener integral of the first varia-
tion of the function under suitable conditions.

THEOREM 6. Let y,w € Co(B), let F be a Wiener measurable func-
tion defined on Cy(B) and let F(-+y) be integrable. Let X : Co(B) — B
be a random variable, where B is a real normed linear space, and let F
have the first variation 6,,F (z) for z € Co(B). Suppose that there exists
an integrable function Gy, such that, for some € > 0,

(5) Sup 6w F (2 +y + tw)| < Gyu(z)
t|<e

for mp-a.e. x € Cy(B). Then, for |t| < €, both E{§,F(- +y + tw)| X](§)
and E[F(- + y + tw)|X](§) exist for Px-a.e. £ € B, where Px is the
probability distribution of X on (B, B(B)).
Moreover, suppose that there exist a Px-integrable function Hy ., on
B such that
(6) sup |6 E[F| X](y + tw, )| < Hy,w(€)
€

with the existence of 0, E[F|X](y + tw, &) for Px-a.e. £ € B. Then, for
|t| < €, we have

| BuEIFIX)(w + tw, P (€
(7) N
= [ BlBuP(+y+ ) XI€dP (€

for any A in B(B) and hence

(8) SwE[F|X](y 4 tw, &) = BlSu F(- + y + tw)| X](§)
for Px-a.e. £ € B.
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Proof. By the mean value theorem and (3), we have, for some t; with
|t1l < Itl )

Flz+y+tw)=F(z+y) +té,F(z+y+tiw)

if |t| < ¢, so that F(z +y + tw) is an integrable function of z by (5) and
E[F(-+y+tw)|X](£) exists for Px-a.e. £ € B. Further, suppose that (6)
holds. Let mp|p be the restriction of mp on D = {X~1(A)|A € B(B)}.
Note that Hy ., (X (z)) is an integrable function of z by the change of
variable theorem. Then, for A € B(B) and |t| < €, we have

/A SwE[FIX](y + tw, €)dPx (€)

_ / % E[F(- +y + tw)| X)(X (z))dms|p (<)
X-1(4)

_9
ot

_9 / F(z +y + tw)dmg(z)
at X—I(A)

/ E[F(- +y+ tw)|X](X (z))dms|o(z)
X-1(A)

8
= /X_I(A) EF(m +y + tw)dmp(z)
= / OwF(z + y + tw)dmp(z)
X-1(4)
_ / E[6,F (- + y + tw)| X](X (z))dma|p(z)
X-1(4)

_ /A E[5uF (- + y + tw)| X](€)dPx (€)

by (3), (4), (5), (6), [11, Theorem 2.27] and the change of variable
theorem. Hence we have (7). O

The following corollary shows that (8) holds under more weak con-
ditions if we replace the random variable X by X, which is given as in
Lemma 3.

COROLLARY 7. Let y,w € Cy(B), let F be a Wiener measurable
function defined on Cy(B). Let X, be given as in Lemma 3 and F have
the first variation 6,,F(x) for x € Cy(B). Suppose that, for some € > 0,
both F(- +y) and 6, F(- + y + tw) are integrable for |t| < e. Moreover,
assume that, for Px_-a.e. 5 € B*, there exists an integrable function
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Gé',y,w on Cy(B) such that

9) sup |3 F (e —[2] + €] +y+1tw)| < G, (@)

for mp-a.e. © € Co(B). Then, §,E[F|X;](y + tw, €) exists for |t| < e
and it is given by :

SwEF|X,)(y + tw, &) = E[8uF(- +y + tw)| X-](€)

for Px_-a.e. £ € B".

—

Proof. Since F(- +y) is integrable, E[F(- + )| X;](§) exists for Px,-
ae. £ € BF and F(z — [z] + [€] + y) is integrable as a function of «
by Lemma 3. An application of the mean value theorem shows that
Flx —[z]+ [€] +y +tw) is integrable for |¢| < e. Similarly, F(z+y+tw)
is an integrable function of . Thus we have

=

E[6uF (- +y + tw)| X-](¢)

_ / 5uF(z — [2] + €] +y + tw)dma(z)
Co(B)

_ / (%F(x o] + [ + y + tw)dmp(z)
Co(B)
= % F(z — [z] + [€] + y + tw)dmg(z)
Co(B)
— %E[F(- +y + tw)| X-1(€),

where the third equality follows from (9) and [11, Theorem 2.27]. O

COROLLARY 8. Let y,w € Co(B), let F1,F> be Wiener measurable
functions defined on Co(B) and let X be given as in Lemma 3. Let F1, F
have the first variations 6, F1(x), 0, Fe(z), respectively, for x € Co(B).
Let Fy(- + y)Fa(- +y) be integrable and suppose that, for some € > 0,
both Fi(- + y + tw)dy, Fo(- +y + tw) and Fa(- +y + tw)dy Fi(- +y + tw)
are integrable for |t| < e. Moreover, suppose that, for Px, -a.e. f e B,
there exist integrable functions Gly o G?y e Co(B) such that

sup |Fy(z — [a] + (] +y + tw)du Fa(z — [a] + [€] +y + tw)|
(10) Jt|<e
< G;—' (z)

YW
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and

sup |Fo(z — [z] + [€] + v + tw)du Fi(z — 2] + [ ]+ y + tw)]
(11) 'tl;f

Ggy, (z)

for mg-a.e. € Co(B). Then 6,[F1 F2| X5 |(y + tw, &) exists for |t] < ¢
and it is given by the formula

=

S B[R Fa| X | (y + tw, §)
= E[u[Fi(- + y+ tw)Fo(- +y + tw)]| X,)(€)

-

= E[F(- +y + tw)d Fo(- + y + tw)| X-](¢
J

)
+ E[Fy(- + y + tw)d, Fi (- + y + tw)| X €
for Px, -a.e. § e B*.
Proof. Let F = F1F,. By (10) and (11), the inequality (9) is satisfied
for F. Now, the results follow from Corollary 7, immediately. 0

The following lemma is useful to derive Theorem 10. For the proof
of this lemma, see [6).

LEMMA 9. Let 0 < u < T and let w € Co(B) with w(u) € H. Let F
be defined on Cy(B) and it can be expressed by F(z) = f(x(u)) for mp-
a.e. © € Co(B) where f is a measurable function defined on B. Let F' be
integrable and have the first variation 8, F () for x € Co(B). Suppose
that there exists an integrable function G defined on Co(B) such that,
for some € > 0,

(12) sup |0y F(z + tw)| < G(x)

|t|<e
for mg-a.e. © € Co(B), where G also can be expressed by G(z) = g(z(u))
for mp-a.e. € Cp(B) with g being defined on B. Then, we have

1 ~
[ duF@ams(e) = ¢ [ (), 20) F@dns(z)
Co(B) U JCo(B)
with the existences of the both sides of the equation.

THEOREM 10. Let 0 < u < T, let w € Co(B) with w(u) € H and
let X, be given as in Lemma 3. Let F be defined on Co(B) and, for
mp-a.e. ¢ € Co(B) and Px, -a.e. £ e B*, let E[F(- + z)|Xr 1(€) exist
and be integrable as a function of z. For some € > 0, suppose that
S E[F| X |(z + tw, &(|t| < €) exists for Px,-a.e. £e ]Bk and mg-a.e.
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z € Cy(B). Also, suppose that, for Px, -a.e. 5 € B*, there exists an
integrable function G¢ on Co(B) with

sup |0y E[F| X |(z + tw:E)l < Gf(m)

jt|<e

for mp-a.e. x € Cy(B). Moreover, suppose that, for Px_-a.e. E € B,

-

both E[F(- + z + tw)| X;](§) and Gg(x) can be expressed by

— -

E[F(- + z + tw)| X,](£) = f(2(u) +tw(u),§)

for |t| < € and

Gelz) = g(a(u), &)

for mp-a.e. x € Cy(B), where f,g are measurable functions defined on
B x B*. Then we have

/ 6w E[F|X,)(z, E)dmp(z)
Co(B)

-4 / (w(w), z(w))~E[F(- + z)| X, (§)dmp(z)
Co(B)

u
for Px, -a.e. E € B* with the existence of the right-hand side of the
equation.

Proof. For £ € B, let fg—(:r) = f(z(u),€) and gg(a:) = g(x(u),€) for
mp-a.e. * € Cyp(B). By Lemma 9, we have the result with replacing f,
g by fg, 9g respectively. O

Now, we obtain a variety of integration by parts formula from Corol-
lary 8 and Theorem 10.

COROLLARY 11. Let 0 < u < T, let w € Cy(B) with w(u) € H and
let X, be given as in Lemma 3. Let Fy, F» be defined on Cy(B) and, for
mp-a.e. ¢ € Cy(B) and Px_-a.e. £ e B, let E[Fy(- + z)Fy(- + )| X, (€)
exist and be integrable as a function of x. For some e¢ > 0, suppose that
SwE[FLF| X, )(z + tw, §)(|t| < €) exists for Px,-a.e. £ € B¥ and mp-a.e.
z € Co(B). Also, suppose that, for Px_-a.e. 5 € B¥, there exists an
integrable function G on Co(B) with

Is}lp léwE[F1F2|X7-](m + tw,€)| < Gg(w)
t|<e
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for mg-a.e. x € Co(B). Moreover, suppose that, for Px_-a.e. f € B,
both E[Fi(- + z + tw) Fa(- + z + tw)| X;](€) and Gg(x) can be expressed
by
E[Fi(- +z + tw)Fy (- + & + tw)| X, () = f(z(u) + tw(w),§) for |t| < €
and

Ge() = g(o(u), )
for mp-a.e. x € Cy(B), where f,g are measurable functions defined on
B x B*. Then we have

-

z / (w(w), z(u))~E[F1(- + ) Fa(- + )| X;](§)dmp(x)
U JCo(B)

=/ SwE[FFy| X/ )(z, &) dmp ()
Co(B)

for Px_-a.e. E € B* with the existence of the right-hand side of the
equation.

In addition, suppose that the gssumptions in Corollary 8 hold an_gl
both E[Fy(- + z)0y F2(- + z)| X7](€) and E[Fa(- + )6, Fi(- + )| X;](€)
are integrable as functions of x for Px_-a.e. 5 € B*. Then we have

l/ (w(u), o(u))~E[Fi(- + 2) Fa(- + )| X ](§)dmp ()
U JCo(B)

- / ElbulFi(- + 2)Fa(- + 2)]|X,)(€)dms(a)
Co(B)

- / E[Fy(- + 2)8uFa(- + 0)|X,](E)dma(x)
Co(B)

+ . B[Fy(- + 2)bu Fi(- + )| X, (€) dmp(z)

for Px,-a.e. £ € BF.

4. Transforms of the functions in Banach algebra F(Cy(B); u)

For a given extended real number p with 1 < p < 00, suppose that p
and p’ are related by % + z% = 1(possibly p’ = 1 if p = o0). Let G, and
G be measurable functions such that, for each v > 0,

lim |Gr(yz) — G(vz) [P dmg(z) = 0.
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Then we write

Lim.(w?)(Gn) = G

n—oo

and call G the scale-invariant limit in the mean of order p’. A similar
definition is understood when n is replaced by a continuously varying
parameter.

Now, we define Fourier-Feynman transform and conditional Fourier-
Feynman transform of functions on Co(B).

DEFINITION 12. Let F be defined on Cy(B) and for A € C let
TA(F)(y) = E"*F(- + y)]

for s-a.e. y € Cp(B) if it exists. For a non-zero real g, we define the Ly
Fourier-Feynman transform Tél) (F) of F by the formula

T (F)(y) = B2 [F (- +y)]

if it exists for s-a.e. y € Co(B) and for 1 < p < oo we define the L,
Fourier-Feynman transform Tq(p )(F) of F' by the formula

TP)/(F) ~ Lim. (Wl )(TA(F)),

A——igq

where A approaches to —iq through C,.

DEFINITION 13. Let F be defined on Cy(B) and let X, be given as
in Lemma 3. For A € C, and for s-a.e. £ € B let

TH\[F|X-](y,) = E**[F(y + )| X,1(§)

for s-a.e. y € Cy(B) if it exists. For non-zero real ¢ and for s-a.e. 5 € BF,

we define the Ly conditional Fourier-Feynman transform Tél)[F | X ;] of
F given X; by the formula

- —

TOFIXe(y, ) = | lim, T3[FIXc](y,€)

if it exists for s-a.e. y € Cp(B) and for 1 < p < oo we define the L,

conditional Fourier-Feynman transform Tq("7 ) [F'| X of F given X, by the
formula

TPIFIX,IC,€) ~ Lim, () (TFIXC(0),

where A approaches to —ig through C,.
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Let ‘H be an infinite dimensional real separable Hilbert space and let
M(H) be the class of all C-valued Borel measures on H with bounded
variation. Let 0 < u < T be fixed, but arbitrarily, and let F(Cy(B); u) be
the space of all equivalence classes of functions F which, for o € M(H),
have the form

(13) F(a:)z/Hexp{i(h,:v(u))N}da(h)

for s-a.e. x € Cy(B). It can be shown that the class F(Co(B);u) is a
Banach algebra and it is isomorphic to M(H) as Banach algebras ([10]).
Now we introduce a useful integral, which appears in the proof of
several results. The proof follows from the fact that the random variable
(h,-)™ is normally distributed with mean 0 and variance |h|? if h # 0.

LeEMMA 14. Let (H,B, m) be an abstract Wiener space and let h € H.
Then we have

/]Bexp{i(h,atl)N}dm(xl) = exp{—@}.

THEOREM 15. Let F' be given by (13), let X; be given as in Lemma
3 and let w € Cyp(B). Choose u such that ty«—1 < u < t,« for some
p* €{l,--- ,k} and let
(tpr —u)(u — tp*—l).
tpe — tpr 1

(14) T =
Moreover, suppose that
(15) [ b w1 dol(h) <

Then, for s-a.e. y € Co(B), 0w E[F|X,)(y,&) exists for Px, -a.e. £ € B
and it is given by the formula

5w BIF|X:](y, )
= / i(h, w(w))™ exp{i(h, [€](u) + y(u))™ }exp{——lhl2}do( )-
H

Proof. By (2) and Fubini’s theorem, we have for t € R
(- + y + tw)| X, ] ()

/ / exp{i(h, z(u + [El(w) u) + tw(u))™}
cO ms)
dmg(z)do(h)

(16)
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= [ explith, [l + () + w(a))
x/ exp{ (h z(u) — z(tpe—1)
Co(B)
U — bpr—1 ~
— ———(a(tp) — 2(tpr-1)) | pdmm(x)do(h)
tpr — tpr—1
for Px, -a.e. £ € B*.
1 1
Let o = %2 ")(_“t fr=0® and g = —(“—tf*—ii(tf'*—")?. By Theorem 2,
p*—1 p* —lp*x 1
we have

E[F(- +y + tw)| X,](€)
- / expli(h, [6(u) + () + tw(w)™} / explila(h,z1)”™
H B2
+ B(h, 22)]}dm? (21, 22)do (h)
. ~ + B2 2
— [ explith, () + vta) + w(w) }exp{— | }da(h)
= [ expfithy [€1) +300) + ()} eXP{-gw}da(h),
H
where T is given by (14) and the second equality follows from Lemma
14. By (15) and [11, Theorem 2.27], we have

8w EIF| X ](y, €)

- %E[F(- +y+ 1) X eco

= t(h,w(uw))™ exp{i expl{ ——|h|? bdo

= [ ith o)y explith, )+ )} p{~IHP par(h
for Px, -a.e. £ € B*. d

REMARK 2. It is not difficult to show that under the condition (15)
we have, for s-a.e. z € Cy(B),

50 F(z) = /H i(h, ()™ expi(h, (u))™}do (h).

Let v = T and suppose that (16) holds for € = 0 € B*. Then, for
F € F(Cy(B);T), we have 6wE|F|X,)(z,0) = 6,F(z) by Theorem 15.
In this case, as a special case of the result of Theorem 15, (3.34) in [9]
can be obtained, too.
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THEOREM 16. Let F be given by (13) and let X, be given as in
Lemma 3. Let 1 < p < oo and let ¢ be a non-zero real number. Then,

for s-a.e. £ € BF, Tq(p) [F|X,](y,€) exists for s-a.e. y € Co(B) and it is
given by

T [P0, )
= exp{? u u))~} ex L o
= [ el ) + v Yexo{ -5 oo

where T is given by (14).

17)

Proof. For A > 0 and s-a.e. 56 B¥, we have
T\[F|X7)(y, )

_ / F(OA"3 (2 — [a]) + [€] + y)dma()
Co(B)

= /eXp{i(h, [f](u)-i-y(u))N}/ exp{i(h, A% (w(u) — [a](»)))™}
H Co(B)
dmg(z)do(h)

= [ exp{i(h, [€](u) )~} exp ——‘|h|2 do(h)
H

for s-a.e. y € Cy(B) using a similar method in the proof of Theorem 15.
By Morera’s theorem and the dominated convergence theorem, we have

the result for A € C4. Let 1 < p < 0o and let Ty (p) [F1X:)(y, ) be given
by (17). For p =1 we have

ITA[F1 X (9, &) — TOFI XAy, ©)]

r il
< exp{——hz}—ex {——h2}
[ Jexo{=g51htt | - exo{ 50

andfor1<p§oo(%+z%=1)wehave

djo|(h)

/C o, DFX00,8) ~ TP P, dma)

< [ [ Jee{ -5} —exp{ 510l d|a|(h>]p'

for v > 0. Letting A — —iq through C,, by the dominated convergence
theorem, we have (17) as the Ly, conditional Fourier-Feynman transform
of F. O
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Using the same method in the proof of Theorem 16, we have the
following corollary.

COROLLARY 17. Let F be given by (13). Then Ty(F') exists for A €

C, and, for 1 < p < oo and for non-zero real q, T,;p )(F) exists. Moreover,
they are given by

18 nE-= [ exp{z‘(h,y(u))N}exp{-%W}da(h)
and
19) TP = [ exwlilhy)” besp{ ~5eInf? o 1)
for s-a.e. y € Co(B).
REMARK 3. For any Borel subset H of H, let
o) = [ exptith, {60} exp {1l exp { S0} o)
and let Fq7~ be given by (13) with replacing o by T, & Then, for s-a.e.

56 B*, we have
TPF|X-)(y,8)

@) = [ ewlitn @ }exp{——|hl2}da(>

— TO)(F, )(w)

and

—

(21) TOITPF|X,](E)|X:)(y, —€) = F(y)
for s-a.e. y € Cy(B).

THEOREM 18. Let F be given by (13), let w € Co(B) and let X,
be given as in Lemma 3. Let 1 < p < oo and let g be a non-zero real
number. Suppose that (15) holds. Then we have, for s-a.e. 51,52 € BF,

TP 5, EFIX7](,6)1X,](4, &) = S BITP [FIX,](, &)1 X-](1,61)
= 6, E[TP[F|X,)(-, &)1 X-] (v, &)
for s-a.e. y € Cy(B).
Proof. For H € B(H), let

) = [ ith () exp{ilh, [0} x exp { ~E I bt
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and
o, elt) = [ explith, @) Yexp { -5 0P ao ) for E< B,

where I is given by (14).
Then, by Theorems 15 and 16, both 6, E[F|X7](-,£) and TP [F|X.]

(-,€) are elements of F(Co(B);u). Therefore, for s-a.e. &1,& € B¥, we
have

TP (6, E[F| X, (-, €)1 X-) (v, &)

- o i
- /H exp{i(h, [&2](u) + y(u)) }exp{—glhlz}de,g*l(h)
_ /H i(hy w(w))™ exp{i(h, [€1](w) + [&)(w) + y(u))™}

X exp{—%lh]z} exp{—g[hlz}da(h)

. ~ - ~ r
= [ ith () expfith, [61w) + )} exp{ ~ FIbP o, 1)
— S, BITPIFIX, (&)X 16, &).
Similarly, we have
TP 6w E[FIX-]( &)1 XA (9, &) = 8uB[TP[FIXA)( &)I1X:)(y,62). O

The following theorem shows that the Fourier-Feynman transform of
conditional first variation of functions in F(Cy(B); u) is essentially same
to the conditional first variation of Fourier-Feynman transform of the
functions.

THEOREM 19. Let F' be given by (13) and let 1 < p < co. Under the
assumptions in Theorem 15, we have, for non-zero real q and for s-a.e.

£ e B,
TP (6, E[F|X;)(-, €))(y) = 8w E[TP (F) X)(y, )
for s-a.e. y € Cy(B).

Proof. For any Borel subset H of H, let o4 (H) = [ exp{—%}-|h|2}
do(h) and let o, ¢ be given as in the proof of Theorem 18. By Theorem
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15 and Corollary 17, for s-a.e. 5 € B*, we have
TP (3w E[FIX)(-,6)) (v)
-/ eXp{i(h,y(u))N}eXP{—;—ZWP}dUW,g(h)

= [ st expfich, ) )}exp{ (5+ )2 baat

= /i(h,w( ~ exp{i(h, [€](u) }exp{——|h|2}daq, (h)
H
= 6, E[T{P (F)|X:](y, )

for s-a.e. y € Cy(B) and hence the proof is completed. O

Using Remark 2 and Theorem 16, we have the following corollary.

COROLLARY 20. Let F be given by (13), let w € Co(B) and let X,
be given as in Lemma 3. Let 1 < p < oo and suppose that (15) holds.
Then we have, for any non-zero real q and for s-a.e. £ € B¥,

TP (6, F| X-] (3, &) = 6u(TP[FIX,)(, ) ()
for s-a.e. y € Cy(B).

THEOREM 21. Let F be given by (13), let w € Cy(B) with w(u) € H
and let X, be given as in Lemma 3. Let 1 < p < o0 and suppose that
(15) holds. Then we have, for non-zero real g and for s-a.e. { € B*,

/ i TP 6, F|X:](x, §)dmz(z)
Co(B)

anfq .
= [ s IFIX ) @ima(a)
Co(B)
_zq a"fq ~ —
= =0 [ (), 2(u)) TP FIX (2, Edms(c)
Co(B)
with the existences of both sides of the equality.

Proof. For p > 0 let F,(z) = F(pz) for ¢ € Co(B) and for v > 0
let z = vyw. Then, by the definition of conditional Fourier-Feynman
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transform and Theorem 10, we have

/ b e (T2 [FI X, )(-, €)) (o) dim ()
Co(B)

= / e )g T,-2[F|X,](pz + tpz, £)|i=odmp(z)

- /C(]B)aat [F(p - +pz + tp2)| X (0 ))(€)s=0dmp ()

= / aatE[F( +x+tz)|XT](p—1£")|t:0de(x)
Co(B)

_ / 8. E[F,| X, (x, p~ &) dmu(z)
Co(B)

-, / (2(w), 2(w))~ B[F,(- + z)| X-](p~ '€)dms(z)
Co(B)

=2 [ (), 2(w) ELF(p - +52) X (p )] €)dma (o)
U JCo(B)

_ l/ (2(u), 5(w)) Ty [F|1 X (pz, E) dma(z)
U JCo(B)

for s-a.e. 56 BE. For A >0 let p= A~2 and v = A3. Then we have

/ Ww(DFIX(, 6) (A3 2)dma(z)
Co(B)

_2 / (w(w), A2 (w))“Ta[FIX,) (A, E)dimp ().
U JCo(B)

By Morera’s theorem we have the last equality for A € C, and, letting
A — —iq through C., we have the result by Theorem 16 and Corollary
20. tJ

Now we introduce a kind of integration by parts formula for con-
ditional Fourier-Feynman transform of functions in F(Co(B);«). The
proof follows from Theorem 21, immediately.

COROLLARY 22. Let Fi, F> be given by (13) with replacing o by
01,09, respectively, let w € Cy(B) with w(u) € H and let X, be given
as in Lemma 3. Let 1 < p < oo and let g be a non-zero real number.
Suppose that

/ (R, w(w))|d(lo1] + |o2])(h) < 00
H
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Then we have, for s-a.e. 5 € BF,

— anfy —
=2 (w(w),o(w) TP [F | X (=, §)dms (2)
Co(B) ,

_ / T [Fyd, 1 |X-) (2, &) dma(z)
Co(B)

anfq
+ / TP [Fi6, Fo) X, )(z, E)dmp(z)
Co(B)

with the existence of each analytic Feynman integral.

COROLLARY 23. Under the assumptions in Theorem 21, we have
anfq —q q anfq N
(22) / 5 F(z)dmp(z) = =2 / (w(w), o(u))™ F(c)dms (c).
Co(B) » U JCy(B)
Proof. The result immediately follows from Theorem 21 and the equa-
tion (21). ‘ O

REMARK 4. The equation (22) is a special case of the equation (2.5)
in [6]. Note that we can also derive this equation using Corollary 2.4 in
6], directly.

5. Transforms of functions in F(Co(B); ©) with n linear fac-
tors

Let 0 < u < T be fixed, but arbitrarily, let F' be defined on Cy(B)
and for any given fixed n € N let

Eu

for s-a.e. x € Cy(B) where w; € Co(B) with w;(u) € Hfor j =1,-
For convenience, let Fy = F.

Our first theorem gives a recurrence relation in which we express the
transform of F} in terms of the transforms and variation of F;_; under
suitable conditions.

o~
|
—

THEOREM 24. For 1 < p < oo, for a non-zero real q and for j =
1,---,n, assume that both Tq(p)(dijj_l)(y) and Tq(p)(Fj_l)(y) can be
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expressible as analytic Feynman integrals for s-a.e. y € Cy(B). More-
over, suppose that (22) holds with replacing w, F by wj, Fj_i(- + ),
respectively. Then Tq(p )(Fj)(y) exists for s-a.e. y € Co(B) and is given
by the recurrence relation

TP (Fy)(y) = %Té”)(%Fj—l)(y) + (wj (), y(w) TP (Fj-1) (y).

Proof. Since Tq(p) (6w, Fj—1)(y) exists, we know that dijj_l()\_%x+y)
is Wiener integrable for each A > 0 and, for s-a.e. y € Cy(B), we have

TP (b, Fj-1)(y)
anfq
= [ by Byt pidma(a)
Co(B)
i anfqy N
=~ [ Fy(a + v (wj(w), o(w) + () dma()
U Jco(B)
zq anfq -~
+ — Fi_1(z + y)(wj(u), y(u))~ dmp(x)
U JCo(B) )
/l.q anfq
= — = Fj(z + y)dmg(x)
U JCo(B)

: anfy
# ) [ Fae s ydma(e)

1iq 1q ~
= - ETq(p)(Fj)(y) + - (wj(w), y(w)) TP (Fj-1)(y),
where the second equality follows from (22). Therefore, we have the
result. O

The following theorem is an immediate result of Theorem 24.

THEOREM 25. For 1 < p < oo, for a non-zero real q and for j =
1,---,n —1, assume that

(23) TP (Suy 11 Fy) (y) = busy 1 (TP (F)) ()
and
(24) TP (Suyy 31 Fj—1)(Y) = Suwy i (TeP (Fj—1))(v)

hold for s-a.e. y € Cy(B) with the existences of Fourier-Feynman trans-
forms and first variations. Moreover, for some € > 0, both Tq(p )((5w i Fj-1)
(y + twj41) and Tq(p) (Fj—1)(y + tw;41) can be expressible as analytic
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Feynman integrals, and Fj_1(- + y + tw; 1) satisfies (22) with replacing
w by wj for |t| < e. Then, for s-a.e. y € Co(B), we have the recurrence
relation

T (G0 F7) ()
= By (TP (B, Fi-1) () + (w3 (), w14 (1)
x TP (Fi_1)(y) + (wj(w), y(w))“ TP (bu; 1 Fi—1) (1)
Proof. For t in R with |t] < €, by Theorem 24, we have
TPV (Fy)(y + twjr)
= %T}”)(éijj_l)(y + twjq1)
+ (wj(u), y(u) + twj41.(w)“TgP (Fj-1)(y + twjia).

Differentiating both sides of the last equation and letting ¢ = 0, we have
the result by (23) and (24). O

Now, let Fy = F where F is given by (13) and suppose that
/ Ih[mdle|(h) < oo.
H

Then, we have [, |h|’d|o|(h) < oo for j=1,---,n—1and

&Mﬁmﬁmw=/ummmmm&wmmr—%wﬁmmy

H
Hence we have

s (o (TP (F))) ()
- —-/L<h,uu<u»<h,wzuo>exp{uh,yao>~}><exp{-—§gvu2}da(h>

for s-a.e. y € Co(B), which implies 6y, (0w, (Tq(p) (Fp))) € F(Co(B);u).
By Corollary 23 and Theorem 24, we have

TP (F)(y) = %L&ul (TP (Fo)) (v) + (w1 (w), y(w) TP (Fo) (y)
for s-a.e. y € Cp(B). Also, we have

GunFL(0) = o [Foly + 1) (n (u),u(a) + (1)) oo
= b Po(y) 1), )™ + Fo(y) o () wa(w)
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and hence
TP (5 ) ()
= 20 (T (ux FO) ) + (11(0), y(w)) T (o Fo) )
+ (wi(u), wa(w)) TP (Fo) (y)
= 5us (T (F1))(y)

for s-a.e. y € Cy(B). Again, by Theorem 24 with j = 2, we see that
U
TP (Fy)(y) = ?51112 (TP (F1)) () + (wa(w), y(w) TP (F)(y)

for s-a.e. y € Cy(B). Continuing this process, we have

Bun (- Sun (TP (Fo)) -+~ ) ()

n

= [ (Tt ) exp ih )y~ = Se102 bao(r

i=1
for s-a.e. y € Cy(B), which implies
Bun (- Bun (TP (F)) -+ ) € F(Co(B); w)-

Hence 6y, (Tép )(Fn_l))(y) exists for s-a.e. y € Cp(B) and, using Theo-
rem 25, it is given by

Sun (TP (Frz1)) (y)
S Tq(p) (6wnFn_1)(y)

. 0
B (?u) [(wn-1(w), wa () TP (Fa-2)(y) + (wn—1(u), y(u))~

X B (T (Fa)) ()] + (;“) {(wn—2(u), w1 ()
< (TP (Fnm))(9) + (t0n—2(1), () (TP (Fr—3)) (@)
. 2
T (e (), Y()) 5, (2 (TP (Frs))) (9] + (;“) (wn—s(u),

Wn—2(1)) 8w (Suop—y (TP (Fr=a)))(y) + (wn—3(w), wp—1(u))
X G (u—y (TP (Fr—4))) () + (wn—3(u), wn(u))
X G-y (Bup—p (TP (Fra))) () + (wn—3(u), y(u))™
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iu\ "2
B (B B (TP (P )W) + - + (;) [ (u),

W2 (1)) Gus (Sup—1 (- (Buo (Buog (TP (FD)))) ) () + (wr(w), ws(w))
X S (B3 (- - (Bug (Busg (TP (FO))) -+ (@) + -+ + (wi(w), wn(w))
X Bus (Buoa (-~ (B (Buog (TP (F)))) -+ ) () + (wr(w), y(w))™

iw\"
% B B -+ (Bug (B TP (Fo))) - )] + ( )

X Buon Oum 1 (- - Bu (G (TP (F0)))) -+ )) ().

Thus we obtain
TP (Fo)(y) = %‘-%n (TP (Fre) (W) + (wn (u), y(w)) TP (Fae1) (y)

for s -a.e. y € Co(B) by Theorem 24 and hence we have the following
theorem.

THEOREM 26. Under the above assumptions, for k = 1,--- ,n, we
have
iy oL k
TP E)) = 23 b P ED W) T (wr(u), )" |
J=0 I=j+2

k
+ 700 ) ([T twst, w0

j=1
for s-a.e. y € Cy(B).

REMARK 5. For k = 1, setting y = 0, we obtain the following Feyn-
man integral formula.

anfy
/ F(2)(wi (w), 2(w)) ™ dm(z)

Co(B)

U U

= — i{h, wi(u))ex ——hz}dah.
* [ ithswnyexp { ~GoIn | doth)

REMARK 6. Let wy € H and let w € Cy(B) with w(u) = wy. With
these settings, we can obtain the results in [9] as special cases of this
paper.
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