References
- M. D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, thesis, Univ. of Minnesota, Minneapolis, 1972
- R. H. Cameron, The first variation of an indefinite Wiener intergal, Proc. Amer. Math. Soc. 2 (1951), 914-924 https://doi.org/10.2307/2031708
-
R. H. Cameron and D. A. Storvick, An
$L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30 https://doi.org/10.1307/mmj/1029001617 - R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, An analytic functions, Lecture Notes in Math. 798 (1980), 18-27 https://doi.org/10.1007/BFb0097256
- K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct. 14 (2003), no. 3, 217-235 https://doi.org/10.1080/1065246031000081652
- K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Fourier-Feynman transform and first variation over Wiener paths in abstract Wiener space, (2004), to appear
- K. S. Chang, D. H. Cho, and I. Yoo, A conditional analytic Feynman integral over Wiener paths in abstract Wiener space, Internat. J. Math. 2 (2002), no. 9, 855-870
- K. S. Chang, B. S. Kim, and I. Yoo, Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space, Integral Transforms Spec. Funct. 10 (2000), 179-200 https://doi.org/10.1080/10652460008819285
- K. S. Chang, T. S. Song, and I. Yoo, Analytic Fourier-Feynman transform and first variation on abstract Wiener space, J. Korean Math. Soc. 38 (2001), no. 2, 485-501
- D. H. Cho, Conditional analytic Feynman integral over product space of Wiener paths in abstract Wiener space, Rocky Mountain J. Math. (2003), submitted
- G. B. Folland, Real analysis, John Wiley & Sons, 1984
-
G. W. Johnson and D. L. Skoug, An
$L_p$ analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103-127 https://doi.org/10.1307/mmj/1029002166 - G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, Stochastic Anal. Appl. 1984, 217-267
- J. Kuelbs and R. LePage, The law of the iterated logarithm for Brownian motion in a Banach space, Trans. Amer. Math. Soc. 185 (1973), 253-264 https://doi.org/10.2307/1996438
- H. H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math. 463 (1975)
- C. Park, D. L. Skoug, and D. A. Storvick, Fourier-Feynman transfroms and the first variation, Rend. Circ. Mat. Palermo (2) 2 (1998), 277-292
- K. S. Ryu, The Wiener integral over paths in abstract Wiener space, J. Korean Math. Soc. 29 (1992), no. 2, 317-331
Cited by
- A TRANSLATION THEOREM FOR THE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE vol.53, pp.5, 2016, https://doi.org/10.4134/JKMS.j150317