DOI QR코드

DOI QR Code

CONDITIONAL FIRST VARIATION OVER WIENER PATHS IN ABSTRACT WIENER SPACE

  • Published : 2005.09.01

Abstract

In this paper, we define the conditional first variation over Wiener paths in abstract Wiener space and investigate its properties. Using these properties, we also investigate relationships among first variation, conditional first variation, Fourier-Feynman transform and conditional Fourier-Feynman transforms of functions in a Banach algebra which is equivalent to the Fresnel class. Finally, we provide another method evaluating the Fourier-Feynman transform for the product of a function in the Banach algebra with n linear factors.

Keywords

References

  1. M. D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, thesis, Univ. of Minnesota, Minneapolis, 1972
  2. R. H. Cameron, The first variation of an indefinite Wiener intergal, Proc. Amer. Math. Soc. 2 (1951), 914-924 https://doi.org/10.2307/2031708
  3. R. H. Cameron and D. A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30 https://doi.org/10.1307/mmj/1029001617
  4. R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, An analytic functions, Lecture Notes in Math. 798 (1980), 18-27 https://doi.org/10.1007/BFb0097256
  5. K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct. 14 (2003), no. 3, 217-235 https://doi.org/10.1080/1065246031000081652
  6. K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Fourier-Feynman transform and first variation over Wiener paths in abstract Wiener space, (2004), to appear
  7. K. S. Chang, D. H. Cho, and I. Yoo, A conditional analytic Feynman integral over Wiener paths in abstract Wiener space, Internat. J. Math. 2 (2002), no. 9, 855-870
  8. K. S. Chang, B. S. Kim, and I. Yoo, Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space, Integral Transforms Spec. Funct. 10 (2000), 179-200 https://doi.org/10.1080/10652460008819285
  9. K. S. Chang, T. S. Song, and I. Yoo, Analytic Fourier-Feynman transform and first variation on abstract Wiener space, J. Korean Math. Soc. 38 (2001), no. 2, 485-501
  10. D. H. Cho, Conditional analytic Feynman integral over product space of Wiener paths in abstract Wiener space, Rocky Mountain J. Math. (2003), submitted
  11. G. B. Folland, Real analysis, John Wiley & Sons, 1984
  12. G. W. Johnson and D. L. Skoug, An $L_p$ analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103-127 https://doi.org/10.1307/mmj/1029002166
  13. G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, Stochastic Anal. Appl. 1984, 217-267
  14. J. Kuelbs and R. LePage, The law of the iterated logarithm for Brownian motion in a Banach space, Trans. Amer. Math. Soc. 185 (1973), 253-264 https://doi.org/10.2307/1996438
  15. H. H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math. 463 (1975)
  16. C. Park, D. L. Skoug, and D. A. Storvick, Fourier-Feynman transfroms and the first variation, Rend. Circ. Mat. Palermo (2) 2 (1998), 277-292
  17. K. S. Ryu, The Wiener integral over paths in abstract Wiener space, J. Korean Math. Soc. 29 (1992), no. 2, 317-331

Cited by

  1. A TRANSLATION THEOREM FOR THE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE vol.53, pp.5, 2016, https://doi.org/10.4134/JKMS.j150317