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Abstract. In this paper, we introduce the notion of a left-almost-zero

groupoid, and we generalize two axioms which play important roles in

the theory of BCK-algebra using the notion of a projection. Moreover,
we investigate a Smarandache disjointness of semi-leftoids.

1. Introduction

The notion of BCK-algebra was formulated by Iséki. The motivation of this
notion is based on both set theory and propositional calculus (see [6]). The
notion of an implicativity law in BCK-algebra has a very strong condition, and
it is known that any bounded implicative BCK-algebra forms a distributive
lattice and becomes a Boolean algebra. In Huang’s book [4], very simple two
axioms lead to an implicative BCK-algebra. We considered this fact, and we
found one axiom among the two axioms is necessary to be developed in the
theory of groupoid, called a left (right)-almost-zero groupoid.

Since the present authors introduce the notion of Bin(X) in groupoid theory,
we apply this notion to Bin(X) story. Using the notion of a projection of trace
functions, we generalize two axioms of BCK-algebra which play important role
in BCK-algebra.

Finally we investigated the structure of semi-leftoid with group or BE-
algebra by using the notion of a Smarandache disjointness.

2. Preliminaries

A d-algebra [3] is a non-empty set X with a constant 0 and a binary operation
“ ∗ ” satisfying the following axioms:

(I) x ∗ x = 0,
(II) 0 ∗ x = 0,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.
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An algebra (X, ∗, 0) is said to be a strong d-algebra ([3]) if it satisfies (I),
(II) and (III∗) hold for all x, y ∈ X, where

(III∗) x ∗ y = y ∗ x implies x = y.

Obviously, every strong d-algebra is a d-algebra, but the converse need not be
true.

A BCK-algebra [4, 5, 9] is a d-algebra X satisfying the following additional
axioms:

(IV) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(V) (x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

A BCK-algebra is said to be implicative [9] if x = x∗(y∗x) for all x, y ∈ X. It
is known that a BCK-algebra is implicative if and only if it is both commutative
and positive implicative.

Given a non-empty set X, we let Bin(X) denote the collection of all group-
oids (X, ∗). Given groupoids (X, ∗) and (X, •), we define a binary operation
“�” on Bin(X) by

(X,�) := (X, ∗)� (X, •),
where

x� y = (x ∗ y) • (y ∗ x)

for any x, y ∈ X. Using that notion, Kim and Neggers proved the following
theorem.

Theorem 2.1 ([8]). (Bin(X), �) is a semigroup, i.e., the operation “�”
is associative. Furthermore, the left-zero semigroup is the identity for this
operation.

An algebraic structure (X, ∗, 0) is said to be a BE-algebra [7] if (BE1) x∗x =
0, (BE2) x ∗ 0 = 0, (BE3) 0 ∗ x = x, (BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all
x, y, z ∈ X. These classes of BE-algebras were introduced as a generalization
of BCK-algebras.

Given a non-empty setX, two groupoids (X, ∗), (X, •) are said to be Smaran-
dache disjoint [1, 2] if X has both an (X, ∗)-structure and an (X, •)-structure,
then |X| = 1. The notion of “Smarandache disjoint” means that, given a
groupoid (X, ∗), if we combine another groupoid (X, •) to it, then it can only
be a trivial groupoid.

3. Semi-neutral groupoids

K. Iséki and S. Tanaka [6] noted that a BCK-algebra (X, ∗, 0) is said to be
left (right, resp.)-almost-zero if x 6= y, then x ∗ y = x (x ∗ y = y, resp.) for
all x, y ∈ X. We use the notion, “semi-neutral”, in the groupoid theory. A
groupoid (X, ∗, 0) is said to be (0-)semi-neutral if

(I) x ∗ x = 0 for all x ∈ X,
(SN) x ∗ y = x for all x 6= y in X.
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A groupoid (X, ∗) is said to be an a-semi-neutral if there exists a ∈ X such
that

(I)′ x ∗ x = a for all x ∈ X
and (SN).

Example 3.1. Let X be a non-empty set and let p ∈ X. Define a binary
operation “∗” on X by

x ∗ y :=

{
x if x 6= y,
y otherwise.

Then x ∗ p = x and p ∗ x = p for all x ∈ X. It is easy to see that (X, ∗) is a
p-semi-neutral groupoid. Moreover, every element of X is a vertex of X, and
an edge x→ y can be defined by x ∗ y = x for all x, y ∈ X.

Proposition 3.2. Let (X, ∗) be a left-almost-zero groupoid. If x ∗ y = y ∗ x,
then x = y, i.e., (X, ∗) is a strong groupoid.

Proof. Assume x ∗ y = y ∗ x for some x 6= y in X. Since (X, ∗) is a left-almost-
zero groupoid, we obtain x ∗ y = x, y ∗ x = y. Hence x = x ∗ y = y ∗ x = y, a
contradiction. �

We denote the set of all left-almost-zero groupoids defined on a set X by
LAZ(X), i.e.,

LAZ(X) := {(X, ∗) ∈ Bin(X) | (X, ∗) : left-almost-zero}.
Similarly, we denote the set of all right-almost-zero groupoids by RAZ(X).

Proposition 3.3. The collection LAZ(X) forms a subsemigroup of (Bin(X),
�).

Proof. Given (X, ∗), (X, •) ∈ LAZ(X), we let (X,�) := (X, ∗)�(X, •). If we
let x 6= y, then x ∗ y = x • y = x and y ∗ x = y • x = y. It follows that
x�y = (x ∗ y) • (y • x) = x • y = x. Similarly, we have y�x = y. Hence
(X, ∗)�(X, •) ∈ LAZ(X). Since (Bin(X),�) is a semigroup, we proved the
proposition. �

Proposition 3.4. Let (X, ∗), (X, •) be groupoids and let

(X,�) := (X, ∗)�(X, •).
Then

(i) if (X, ∗) ∈ LAZ(X) and (X, •) ∈ RAZ(X), then (X,�) ∈ RAZ(X),
(ii) if (X, ∗) ∈ RAZ(X) and (X, •) ∈ LAZ(X), then (X,�) ∈ RAZ(X),
(iii) if (X, ∗), (X, •) ∈ RAZ(X), then (X,�) ∈ LAZ(X).

Proof. Straightforward. �

A groupoid (X, ∗) is said to be power associative if (x ∗ x) ∗ x = x ∗ (x ∗ x)
for all x ∈ X.
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Theorem 3.5. Let (X, ∗) be a left-almost-groupoid. If (X, ∗) is power asso-
ciative, then (X, ∗) is a left zero semigroup.

Proof. It is enough to show that x ∗ x = x for all x ∈ X, since (X, ∗) is a
left-almost-groupoid. Assume there exists x ∈ X such that x ∗ x 6= x for some
x ∈ X. Since (X, ∗) is a left-zero-groupoid, we obtain (x ∗ x) ∗ x = x ∗ x
and x ∗ (x ∗ x) = x. It follows from (X, ∗) is power associative that x =
x ∗ (x ∗ x) = (x ∗ x) ∗ x = x ∗ x, which is a contradiction. Hence (X, ∗) is a left
zero semigroup. �

Remark 3.6. Every semigroup is power associative, but a power associative
groupoid need not be a semigroup in general. See the following example.

Example 3.7. Let R be the set of all real numbers. Define a binary operation
“∗” on R by x ∗ y := x+y

2 for all x, y ∈ R. Then x ∗ x = 1
2 (x + x) = x and

hence (x ∗ x) ∗ x = x = x ∗ (x ∗ x). On the while, (x ∗ y) ∗ z = 1
4 (x+ y + 2z) 6=

1
4 (2x+ y + z) = x ∗ (y ∗ z), i.e., (R, ∗) is not associative. Hence (R, ∗) is not a
left zero semigroup.

Corollary 3.8. Let (X, ∗) be a right-almost-groupoid. If (X, ∗) is power asso-
ciative, then (X, ∗) is a right zero semigroup.

Proof. Similar to Theorem 3.5. �

In Huang’s book [4], the following theorem was mentioned without proof.
We provide its proof for developing the theory of a semi-neutral groupoid.

Theorem 3.9. Every semi-neutral groupoid is an implicative BCK-algebra.

Proof. Let (X, ∗, 0) be a semi-neutral groupoid. We claim that it is a strong
d-algebra. (III)∗: Assume x ∗ y = y ∗ x and x 6= y. By (SN), we obtain
x = x ∗ y = y ∗ x = y, which is a contradiction. Hence (III)∗ holds. (II): If
x := 0, then 0 ∗ x = 0 ∗ 0 = 0 by (I). If x 6= 0, then, by (SN), 0 ∗ x = 0. Hence
(X, ∗, 0) is a strong d-algebra. We claim that x ∗ 0 = x for all x ∈ X. If x = 0,
then x ∗ 0 = 0 ∗ 0 = 0 by (I). If x 6= 0, then, by (SN), we have x ∗ 0 = 0. We
claim that (x ∗ (x ∗ y)) ∗ y = 0 for all x, y ∈ X. Given x, y ∈ X, if x = y, then
(x∗(x∗y))∗y = (x∗(x∗x))∗x = (x∗0)∗x = x∗x = 0. If x 6= y, then x∗y = x
and hence x ∗ (x ∗ y) = x ∗ x = 0. It follows that (x ∗ (x ∗ y)) ∗ y = 0 ∗ y = 0.
We claim that [(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = 0. We have 3 cases: (i) x 6= y, x 6= z;
(ii) x = y; (iii) x = z. If (i) x 6= y, x 6= z, then

[(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = (x ∗ x) ∗ (z ∗ y)

= 0 ∗ (z ∗ y)

= 0.

If (ii) x = y, then

[(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = [0 ∗ (x ∗ z)] ∗ (z ∗ x)

= 0 ∗ (z ∗ x)
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= 0.

If (ii) x = z, then

[(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = [(x ∗ y) ∗ 0] ∗ (x ∗ y)

= (x ∗ y) ∗ (x ∗ y)

= 0.

Hence (X, ∗, 0) is a BCK-algebra. We claim that (x ∗ y) ∗ y = x ∗ y for all
x, y ∈ X. Given x, y ∈ X, if x = y, then x ∗ y = x ∗ x = 0 and hence
(x ∗ y) ∗ y = 0 ∗ y = 0 = x ∗ y. If x 6= y, then, by (SN), we obtain x ∗ y = x
and hence (x ∗ y) ∗ y = x ∗ y. We claim that x ∗ (x ∗ y) = y ∗ (y ∗ x) for all
x, y ∈ X. Given x, y ∈ X, if x = y, it holds trivially. If x 6= y, then x ∗ y = x
and y ∗x = y, and hence x ∗ (x ∗ y) = x ∗x = 0 and y ∗ (y ∗x) = y ∗ y = 0. This
proves that (X, ∗, 0) is an implicative BCK-algebra. �

Example 3.10. Let X := {0, 1, 2, 3} with the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 1
2 2 2 0 2
3 3 3 3 0

Then it is easy to see that (X, ∗, 0) is both a semi-neutral groupoid and an
implicative BCK-algebra.

Remark 3.11. The converse of Theorem 3.9 need not be true in general.

Example 3.12. Let X := {0, 1, 2, 3} with the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 2 1 0

Then it is easy to see that (X, ∗, 0) is an implicative BCK-algebra, but not a
semi-neutral groupoid, since 3 ∗ 2 = 1 6= 3 and 3 ∗ 1 = 2 6= 3.

Theorem 3.13. Let (X, ∗, 0), (X, •, 0̂) be semi-neural groupoids, and let

(X,�) := (X, ∗)�(X, •).

Then (X,�, 0̂) is a semi-neutral groupoid.

Proof. Given x ∈ X, we have x�x = (x ∗ x) • (x ∗ x) = 0 • 0 = 0̂. Let x 6= y in

X. Then x�y = (x ∗ y) • (y ∗ x) = x • y = x. Hence (X,�, 0̂) is a semi-neutral
groupoid. �
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Theorem 3.13 shows that the semi-neutral groupoids with respect to � forms
a subsemigroup of (Bin(X),�).

We generalize Theorem 3.13 by using the notion of a semi-leftoid. A groupoid
(X, ∗, 0) is said to be a semi-leftoid over f if x, y ∈ X, (I) x ∗ x = 0 for all
x ∈ X; (SL) x ∗ y = f(x) for all x, y ∈ X, where f : X → X is a map.

Proposition 3.14. Let (X, ∗, 0) be a semi-leftoid over f and let (X, •, 0̂) be
a semi-leftoid over g, where f : X → X is an injective function. If we define
(X,�) := (X, ∗)�(X, •), then (X,�, 0̂) is a semi-leftoid over g ◦ f .

Proof. Given x, y in X, we have x�x = (x ∗ x) • (x ∗ x) = 0 • 0 = 0̂. Let
x 6= y in X. Since f is injective, we have f(x) 6= f(y). It follows that x�y =
(x ∗ y) • (y ∗ x) = f(x) • f(y) = g(f(x)) = (g ◦ f)(x). �

Proposition 3.14 shows that the collection of all semi-leftoids (X, ∗, 0) over f ,
where f :X → X is an injective function, forms a subsemigroup of (Bin(X),�).

Let (X, ∗, 0) be a semi-leftoid for f . If f is a bijection, then we have a
question: Is (X, ∗, 0) a semi-leftoid for f−1? The answer is no. See the following
example.

Example 3.15. Let X := R and let x ∗ y := 2x + 1 for all x, y ∈ R. If we
define a map f : X → X by f(x) := 2x+ 1, then (X, ∗, 0) is a semi-leftoid for
f . If we assume (X, ∗, 0) is a semi-leftoid for f−1, then f(2) = 2 ∗ 3 = f−1(2).
It follows that 5 = 1

2 , a contradiction.

Proposition 3.16. Let f : X → X be a map. Let (X, ∗, 0) and (X, •, 0̂) be
groupoids with

(i) x ∗ x = 0 6= 0̂ = x • x for all x ∈ X,
(ii) if x 6= y in X, then x ∗ y = f(x) = x • y.

Then (X, ∗, 0) and (X, •, 0̂) are isomorphic as groupoids, while they are distinct
elements of Bin(X).

Proof. Define a map ϕ : (X, ∗, 0) → (X, •, 0̂) by ϕ(x) := x. Then it is a
bijective function. Given x, y ∈ X, we have ϕ(x ∗ y) = ϕ(f(x)) = f(x) =
x • y = ϕ(x) • ϕ(y). This proves the proposition. �

4. Trace functions and left-almost-zero groupoids

Given a groupoid (X, ∗), we define a map T (X, ∗) : X → X by T (X, ∗)(x) :=
x ∗ x for all x ∈ X. We call such a map T (X, ∗) a trace function of (X, ∗).

Proposition 4.1. If (X, ∗), (X, •) are groupoids, then T ((X, ∗)�(X, •)) =
T (X, •) ◦ T (X, ∗).

Proof. Let (X,�) := (X, ∗)�(X, •). Then, for any x ∈ X, we have T ((X, ∗)
�(X, •))(x) = T (X,�)(x) = x�x = (x∗x)•(x∗x) = T (X, ∗)(x)•T (X, ∗)(x) =
T (X, •)(T (X, ∗)(x)) = [T (X, •) ◦ T (X, ∗)](x). �
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Given a groupoid (X, ∗), we define a map ι : X → X by ι(x) := x for all
x ∈ X. For any trace function T , we define a subset Ker(T ) of Bin(X) by

Ker(T ) := {(X, ∗) ∈ Bin(X) |T (X, ∗) = ι}.

Proposition 4.2. Let (X, ∗) be a groupoid and let (X, •) ∈ Ker(T ). Then

T ((X, ∗)�(X, •)) = T (X, ∗) = T ((X, •)�(X, ∗)).

Proof. Given x ∈ X, since (X, •) ∈ Ker(T ) and Proposition 4.1, we have

T ((X, ∗)�(X, •))(x) = [T (X, •) ◦ T (X, ∗)](x)

= T (X, •)(T (X, ∗)(x))

= T (X, •)(x ∗ x)

= x ∗ x
= T (X, ∗)(x).

Similarly, we obtain T ((X, •)�(X, ∗)) = T (X, ∗), proving the proposition. �

Let (X, ∗) be a groupoid. A map ϕ : X → X is said to be a projection on
X if ϕ ◦ ϕ = ϕ, i.e., ϕ(ϕ(x)) = ϕ(x) for all x ∈ X.

Theorem 4.3. Let (X, ∗) be a left-almost-zero groupoid and let ϕ := T (X, ∗).
If ϕ is a projection on (X, ∗), then

(x ∗ (x ∗ y)) ∗ y = ϕ(x)

for all x, y ∈ X.

Proof. Given x, y ∈ X, if x = y, then (x ∗ (x ∗ y)) ∗ y = (x ∗ (x ∗ x)) ∗ x =
(x∗ϕ(x))∗x. If x = ϕ(x), then (x∗ϕ(x))∗x = (x∗x)∗x = ϕ(x)∗x = x∗x = ϕ(x).
If x 6= ϕ(x), then (x∗ϕ(x))∗x = x∗x = ϕ(x). Hence (x∗ (x∗y))∗y = ϕ(x). If
x 6= ϕ(x), then x ∗ y = x, since (X, ∗) is a left-almost-zero groupoid. It follows
that

(x ∗ (x ∗ y)) ∗ y = (x ∗ x) ∗ y = ϕ(x) ∗ y.
If ϕ(x) 6= y, then ϕ(x)∗y = ϕ(x). If ϕ(x) = y, then ϕ(x)∗y = ϕ(ϕ(x)) = ϕ(x),
since ϕ is a projection on X. Hence we obtain (x ∗ (x ∗ y)) ∗ y = ϕ(x), proving
the theorem. �

Corollary 4.4. Let (X, ∗) be a left-almost-zero groupoid and let ϕ := T (X, ∗).
If there exists 0 ∈ X such that ϕ(x) = 0 for all x ∈ X, then

(x ∗ (x ∗ y)) ∗ y = 0

for all x, y ∈ X.

Proof. Assume that there exists 0 ∈ X such that ϕ(x) = 0 for all x ∈ X. Then
(ϕ ◦ ϕ)(x) = ϕ(ϕ(x)) = ϕ(0) = 0 = ϕ(x) for all x ∈ X, i.e., ϕ is a projection
on X. By Theorem 4.3, we prove that (x ∗ (x ∗ y)) ∗ y = ϕ(x) = 0 for all
x, y ∈ X. �
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Theorem 4.5. Let (X, ∗) be a left-almost-zero groupoid and let ϕ := T (X, ∗).
If ϕ is a projection on (X, ∗), then

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = ϕ(x)

for all x, y, z ∈ X.

Proof. Given x, y, z ∈ X, we have 4 cases: (i) x 6= y, x 6= z; (ii) x = y, x 6= z;
(iii) x 6= y, x = z; (iv) x = y, x = z.

(i) Assume x 6= y, x 6= z. Then x ∗ y = x, x ∗ z = x. It follows that

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = (x ∗ x) ∗ (z ∗ y)

= (x ∗ x) ∗ (z ∗ y)

= ϕ(x) ∗ (z ∗ y)

=

{
ϕ(x) ∗ ϕ(x) if ϕ(x) = z ∗ y,
ϕ(x) if ϕ(x) 6= z ∗ y

=

{
ϕ(ϕ(x)) if ϕ(x) = z ∗ y,
ϕ(x) if ϕ(x) 6= z ∗ y

= ϕ(x),

since ϕ is a projection on X.
(ii) Assume x = y, x 6= z. Then x ∗ y = x ∗x = ϕ(x), x ∗ z = x and z ∗x = z.

It follows that

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = (ϕ(x) ∗ x) ∗ z

=

{
(ϕ(x) ∗ ϕ(x)) ∗ z if ϕ(x) = x,
ϕ(x) ∗ z if ϕ(x) 6= x

=

{
ϕ(ϕ(x)) ∗ z if ϕ(x) = z ∗ y,
ϕ(x) ∗ z if ϕ(x) 6= z ∗ y

= ϕ(x) ∗ z,
since ϕ is a projection on X. We claim that ϕ(x) ∗ z = ϕ(x). In fact, if
ϕ(x) 6= z, then ϕ(x) ∗ z = ϕ(x), since (X, ∗) is a left-almost-zero groupoid. If
ϕ(x) = z, then ϕ(x)∗z = ϕ(x)∗ϕ(x) = ϕ(ϕ(x)) = ϕ(x), since ϕ is a projection
on X. Hence we obtain ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = ϕ(x) ∗ z = ϕ(x).

(iii) Assume x 6= y, x = z. Then x ∗ y = x, x ∗ z = x ∗ x = ϕ(x) and
z ∗ y = x ∗ y = x. It follows that

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = (x ∗ ϕ(x)) ∗ x

=

{
(ϕ(x) ∗ ϕ(x)) ∗ x if ϕ(x) = x,
x ∗ x if ϕ(x) 6= x

=

{
ϕ(ϕ(x)) ∗ x if ϕ(x) = x,
ϕ(x) if ϕ(x) 6= x

= ϕ(x),

since ϕ is a projection on X.
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(iv) Assume x = y, x = z. Then ((x∗y)∗ (x∗z))∗ (z ∗y) = ((x∗x)∗ (x∗x))∗
(x∗x) = (ϕ(x)∗ϕ(x))∗ϕ(x) = ϕ(ϕ(x))∗ϕ(x) = ϕ(x)∗ϕ(x) = ϕ(ϕ(x)) = ϕ(x).
This proves the theorem. �

Corollary 4.6. Let (X, ∗) be a left-almost-zero groupoid and let ϕ := T (X, ∗).
If there exists 0 ∈ X such that ϕ(x) = 0 for all x ∈ X, then

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0

for all x, y, z ∈ X.

Proof. As we have seen in Theorem 4.3, ϕ is a projection and ϕ(x) = 0 for
all x ∈ X. By Theorem 4.5, we obtain ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0 for all
x, y, z ∈ X. �

Theorem 4.7. Let (X, ∗) be a left-almost-zero groupoid and let ϕ := T (X, ∗).
If there exists 0 ∈ X such that ϕ(x) = 0 for all x ∈ X, then (X, ∗, 0) is a
BCK-algebra.

Proof. Given x ∈ X, we have x ∗ x = ϕ(x) = 0 and 0 ∗ x = 0, since (X, ∗)
is a left-almost-zero groupoid. Assume there exist x, y in X with x 6= y such
that x ∗ y = 0 = y ∗ x. Since (X, ∗) is a left-almost-zero groupoid, we have
x ∗ y = x and y ∗ x = y, and hence x = 0 = y, which is a contradiction. Hence
(X, ∗, 0) is a d-algebra. By applying Theorem 4.3 and Corollary 4.6, we prove
that (X, ∗, 0) is a BCK-algebra. �

A groupoid (X, ∗) is said to be positive implicative if (x ∗ y) ∗ y = x ∗ y for
all x, y ∈ X. Every positive implicative BCK-algebra is a positive implicative
groupoid. The following proposition shows the another way to find positive
implicative groupoids.

Proposition 4.8. Let (X, ∗) be a left-almost-zero groupoid and let ϕ :=T (X, ∗).
Then (X, ∗) is positive implicative.

Proof. Given x, y ∈ X, if x 6= y, then x ∗ y = x and hence (x ∗ y) ∗ y = x ∗ y. If
x = y, then (x ∗ y) ∗ y = (x ∗ x) ∗ x = ϕ(x) ∗ x. We claim that ϕ(x) ∗ x = ϕ(x).
In fact, if ϕ(x) 6= x, then ϕ(x) ∗ x = ϕ(x), since (X, ∗) is a left-almost-zero
groupoid. If ϕ(x) = x, then ϕ(x) ∗ x = x ∗ x = ϕ(x). Hence (x ∗ y) ∗ y =
(x ∗ x) ∗ x = ϕ(x) ∗ x = ϕ(x) = x ∗ x = x ∗ y, proving the proposition. �

5. Smarandache disjointness

The notion of the Smarandache disjointness is very important to investigate
the structures of several general algebraic structures. It gives to test some col-
lision between axioms which consisting two algebraic structures. If we find two
algebraic structures are Smarandache disjoint, then two algebraic structures
have different branches.

In this section we investigate some relations between the semi-leftoid and
other two algebraic structures as follow:
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Theorem 5.1. The class of groups and the class of a semi-leftoids are Smaran-
dache disjoint.

Proof. Let (X, ∗, 0) be both a group and a semi-leftoid for f . If we take y1 and
y2 with y1 6= y2, then x ∗ y1 = f(x) = x ∗ y2 for all x ∈ X. Since X is a group,
by cancellative laws, we obtain y1 = y2, a contradiction. �

Theorem 5.2. The class of BE-algebras and the class of a semi-leftoids are
Smarandache disjoint.

Proof. Let (X, ∗, 0) be both a BE-algebra and a semi-leftoid for f . Then we
have f(0) = 0 ∗ x = x for all x ∈ X. If |X| ≥ 2, then the mapping f has two
values, which is a contradiction. Hence |X| = 1, proving the theorem. �
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