References
- A. Beilinson, A. Bernstein and P. Deligne, Faisceaux pervers, Asterisque 100 (1982).
- A. Borel and J. Moore, Homology theory for locally compact spaces, Michigan Math. J. 7 (1960), 137-159. https://doi.org/10.1307/mmj/1028998385
- N. Chriss and V. Ginzburg, Representation theory and complex geometry, Birkhauser, Boston, 1997.
- W. Crawley-Boevey, Geometry of the moment map for representations of quivers, Compositio Math. 126 (2001), 257-293. https://doi.org/10.1023/A:1017558904030
- V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990.
- A. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), 515-530. https://doi.org/10.1093/qmath/45.4.515
- N. Kwon, Borel-Moore homology and K-theory on the Steinberg variety, Michigan Math. J. 58 (2009), 771-781. https://doi.org/10.1307/mmj/1260475700
- G. Lusztig, On quiver varieties, Adv. in Math. 136 (1998), 141-182. https://doi.org/10.1006/aima.1998.1729
- H. Nakajima, Instantons on ALE spaces, quiver varieties and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416. https://doi.org/10.1215/S0012-7094-94-07613-8
- H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515-560. https://doi.org/10.1215/S0012-7094-98-09120-7
- P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute Lectures 51, Springer-Verlag, 1978.
- D. Yamakawa, Geometry of multiplicative preprojective algebra, IMRP 2008 (2008), 77pp.