• Title/Summary/Keyword: frequency problem

Search Result 3,568, Processing Time 0.039 seconds

A cause analysis of Noise & Vibration of Gas Heater (가스히터의 소음 진동 원인 분석)

  • Koh, Jae-Pil;You, Hyun-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.9-13
    • /
    • 2009
  • A cause of noise and vibration which come from a Combustion of gas heater are a combustion roar and Combustion oscillation. A character of a combustion roar is that sound pressure is distribute with broad band frequency. otherwise, The presence of combustion oscillation caused by positive Feed Back in Combustion Chamber break out a noise and vibration. Accordingly, The method that be solved a noise and vibration is to make each natural frequency different frequency. first, in order to solve problem, we control ratio of fuel and air. that is, Keep away resonance. second, in order to changing natural frequency of Combustion Chamber, We changed the shape of Economizer.

  • PDF

The Mechanical Dither Design of Navigation Guide Structure (네비게이션 가이드 구조물의 기계적 진동설계)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.1949-1954
    • /
    • 2010
  • The gyroscopes have been used as a suitable inertial instrument for the navigation guidance and attitude controls. The accuracy as very sensitive sensor is limited by the lock-in region(dead band) due to the frequency coupling between two counter-propagating waves at low rotation rates. This frequency coupling gives no phase difference, and an angular increment is not detected. This problem can be overcome by mechanically dithering the gyroscope. This paper presents the design method of mechanical dither by the theoretical considerations and the verification of the theoretical equations through FEM(Finite Element Method) applications. As a result, the maximum prediction error of resonant frequency and peak dither rate was under 5 percent. The theoretical equations for the mechanical performances of dither can be said to be feasible.

Current-Mode Circuit Design using Sub-threshold MOSFET (Sub-threshold MOSFET을 이용한 전류모드 회로 설계)

  • Cho, Seung-Il;Yeo, Sung-Dae;Lee, Kyung-Ryang;Kim, Seong-Kweon
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.10-14
    • /
    • 2013
  • In this paper, when applying current-mode circuit design technique showing constant power dissipation none the less operation frequency, to the low power design of dynamic voltage frequency scaling, we introduce the low power current-mode circuit design technique applying MOSFET in sub-threshold region, in order to solve the problem that has large power dissipation especially on the condition of low operating frequency. BSIM 3, was used as a MOSFET model in circuit simulation. From the simulation result, the power dissipation of the current memory circuit with sub-threshold MOSFET showed $18.98{\mu}W$, which means the consumption reduction effect of 98%, compared with $900{\mu}W$ in that with strong inversion. It is confirmed that the proposed circuit design technique will be available in DVFS using a current-mode circuit design.

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

(Frequency Weighted Reduction Using Iterative Approach of BMI) (BMI의 반복적 해법을 이용한 주파수하중 차수축소)

  • Kim, Yong-Tae;O, Do-Chang;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • In this paper, we present a frequency weighted model reduction using LMIs for minimizing the H$\infty$ weighted model error compared with the methods of frequency weighted balanced truncation and frequency weighted Hankel norm approximation. The proposed algorithm, its form is equal to the sufficient condition of performance preserving controller approximation, is based on an iterative two-step LMI scheme induced from bound real lemma. So, it can be applied to the problem of the performance preserving controller approximation. The controller reduction is useful in a practical control design and ensures its easy implementation and high reliability The validity of the proposed algorithm is shown through numerical examples. Additionaly, we extend the proposed algorithm to performance preserving controller approximation by applying to the HIMAT(highly maneuverable aircraft technology) system.

A 32nm and 0.9V CMOS Phase-Locked Loop with Leakage Current and Power Supply Noise Compensation

  • Kim, Kyung-Ki;Kim, Yong-Bin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.11-19
    • /
    • 2007
  • This paper presents two novel compensation circuits for leakage current and power supply noise (PSN) in phase locked loop (PLL) using a nanometer CMOS technology. The leakage compensation circuit reduces the leakage current of the charge pump circuit which becomes more serious problem due to the thin gate oxide and small threshold voltage in nanometer CMOS technology and the PSN compensation circuit decreases the effect of power supply variation on the output frequency of VCO. The PLL design is based on a 32nm predictive CMOS technology and uses a 0.9V power supply voltage. The simulation results show that the proposed PLL achieves a 88% jitter reduction at 440MHz output frequency compared to the PLL without leakage compensator and its output frequency drift is little to 20% power supply voltage variations. The PLL has an output frequency range of $40M{\sim}725MHz$ with a multiplication range of 11023, and the RMS and peak-to-peak jitter are 5ps and 42.7ps, respectively.

Definition of 8×8 sized DCT Scaling Matrix for Motion Estimation in the Frequency Domain (주파수 영역에서의 움직임 예측을 위한 8×8 크기의 DCT 스케일링 행렬 정의)

  • Kim, Hye-Bin;Ryu, Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.21-27
    • /
    • 2019
  • The video compression standard required a processing technique for a high resoluion image and increased the coding size to increase the resolution of the image. Accurate motion estimation and increased coding size provide high accuracy and compression rate, but there is a problem of increased computational complexity. In this paper, we use DCT - based motion estimation in the frequency domain to reduce complexity. However, we found that the DCT and quantization process used in a general video encoder are applied to the frequency domain encoder, resulting in problems caused by the scaling process. Therfore, in this paper, we extract the scaling matrix that can be applied in the DCT step and resolve the, and improve the performance of motion estimation using increased coding size.

On-line Calibration algorithm for Asynchronous CDMA-based antenna arrays (비동기 CDMA 시스템 기반의 배열 안테나용 온라인 보정 알고리즘)

  • Lee Chong-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.18-30
    • /
    • 2004
  • In this paper, the calibration problem of an asynchronous CDMA-based antenna array is studied. A new iterative calibration algorithm for antenna array in the presence of frequency offset error is presented. The algorithm is applicable to a non-linear array and does not require a prior knowledge of the (direction of arrivals) DOAs of the signals of any user, and it only requires the code sequence of a reference user. The algorithm is based on the two step procedures, one for estimating both channel and frequency offset and the other for estimating the unknown array gain and phase. Consequently, estimates of the DOAs, the multi-path impulse response of the reference signal sources, and the carrier frequency offset as well as the calibration of antenna array are provided. The performance of the proposed algorithm is investigated by means of computer simulations and is verified by using field data measured through a custom-built W-CDMA test-bed.

An Improved Algorithm for Respiration Signal Extraction from Electrocardiogram Using Instantaneous Frequency Estimation based on Hilbert Transform (힐버트 변환에 기반한 순간주파수 추정을 이용한 개선된 심전도 유도 호흡신호 추출 알고리즘)

  • Park Sung-Bin;Yi Kye-Hyoung;Kim Kyung-Hwan;Yoon Hyoung-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.733-740
    • /
    • 2004
  • In this paper, an improved algorithm for the extraction of respiration signal from the electrocardiogram (ECG) is proposed. The whole system consists of two-lead electrocardiogram acquisition (lead Ⅰ and Ⅱ), baseline fluctuation elimination, R-wave detection, adjustment of sudden change in R-wave area using moving average, and optimal lead selection. In order to solve the problem of previous algorithms for the ECG-derived respiration (EDR) signal acquisition, we proposed a method for the optimal lead selection. An optimal EDR signal among the three EDR signals derived from each lead (and arctangent of their ratio) is selected by estimating the instantaneous frequency using the Hilbert transform, and then choosing the signal with minimum variation of the instantaneous frequency. The proposed algorithm was tested on 15 subjects, and we could obtain satisfactory respiration signals that shows high correlation (r>0.9) with the signal acquired from the chest-belt respiration sensor.

Effect of CFO on UFMC System (UFMC 시스템에서 CFO의 영향)

  • Lee, Kyuseop;Choi, Ginkyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.97-102
    • /
    • 2016
  • The UFMC(Universal Filtered Multi-Carrier) is one of multi-carrier transmission technique as a candidate of transmission method for the recent 5G communication system. The UFMC can be considered as the system which has both the advantages of OFDM(Orthogonal Frequency Division Multiplex) and the simplicity of FBMC(Filter Bank Multi-Carrier). CFO(Carrier Frequency Offset) causes the problem to lower the BER performance due to a mismatch between the sub-carriers in multi-carrier transmission scheme. The effect of CFO on UFMC is not greater than the OFDM. But it still degrades the system performance caused by interference between the sub-band. In this paper, we analyze the SNR degradation due to changes in the value of EsNo and CFO on UFMC system.