• Title/Summary/Keyword: frequency problem

Search Result 3,568, Processing Time 0.027 seconds

A novel heuristic search algorithm for optimization with application to structural damage identification

  • Nobahari, Mehdi;Ghasemi, Mohammad Reza;Shabakhty, Naser
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.449-461
    • /
    • 2017
  • One of the most recent methods of structural damage identification is using the difference between structures responses after and before damage occurrence. To do this one can formulate the damage detection problem as an inverse optimization problem where the extents of damage in each element are considered as the optimizations variables. To optimize the objective function, heuristic methods such as GA, PSO etc. are widely utilized. In this paper, inspired by animals such as bat, dolphin, oilbird, shrew etc. that use echolocation for finding food, a new and efficient method, called Echolocation Search Algorithm (ESA), is proposed to properly identify the site and extent of multiple damage cases in structural systems. Numerical results show that the proposed method can reliably determine the location and severity of multiple damage cases in structural systems.

Resonance Phenomenon and Its Effects of Laser Texture Disk

  • Choa, Sung-Hoon;Wang, Geng
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.744-751
    • /
    • 2000
  • To achieve lower flying height for high areal recording density, the laser zone texturing of the disk needs to be designed to reduce glide height. One problem of the laser bump design is that the regular laser bump pattern often produces glide resonance phenomenon, which leads to failure of the glide height test. However, it was found in this study that glide resonance is an intrinsic problem of the glide head used and resonance phenomenon depends on the type of the head slider, that is, the natural frequency of the slider body. Therefore, higher glide height or glide failure caused by glide resonance does not lead to head/media interface problem in the real drive operating conditions in which the data head is used. Pseudo-random bump pattern greatly reduces the glide resonance. Smaller bump pitch will also help to reduce the glide resonance. However, as bump spacing becomes smaller, glide height will be increased due to increased air pressure developed around the bumps. Lowering bump height is the most effect way to reduce glide avalanche.

  • PDF

A Study on Implementing the QC Tools for Systematic Problem-Solving (문제해결을 위한 QC 도구의 체계적 활용방안에 대한 연구)

  • Yun, Tae-Hong;Kim, Chang-Yeol;Byun, Jai-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.37 no.2
    • /
    • pp.68-77
    • /
    • 2009
  • There are many quality control(QC) tools useful for solving quality problems. In this paper, QC 7 tools, new QC 7 tools, and other quality tools are first compared with respect to their frequency of use. We suggest an integrated problem-solving procedure to systematically deal with various quality problems. For each step a streamlined flow chart is presented to help the practitioners to adopt relevant tools depending on certain situations they face. The procedure will help quality practitioners solve field quality problems.

Numerical Methods for Wave Response in Harbor

  • Kim, D.J.;Bai, K.J.
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.4-14
    • /
    • 1993
  • A natural and an artificial harbor can exhibit frequency (or period) dependent water surface oscillations when excited by incident waves. Such oscillations in harbors can cause significant damages to moored ships and adjacent structures. This can also induce undesirable current in harbor. Many previous investigators have studied various aspects of harbor resonance problem. In the present paper, both a localized finite element method(LFEM) which is based on the functional constructed by Chen & Mei(1974) and Bai & Yeung(1974) and an integral equation method which was used by Lee(1969) are applied to harbor resonance problem. The LFEM shows computationally more efficient than the integral equation method. Our test results show a good agreement compared with other results. In the present computations, specifically two harbor geometris are treated here. The present method by LFEM can be extended to a fully three dimensional harbor problem.

  • PDF

Solution of the Radiation Problem by the B-Spline Higher Order Kelvin Panel Method for an Oscillating Cylinder Advancing in the Free Surface

  • Hong, Do-Chun;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.1
    • /
    • pp.34-53
    • /
    • 2002
  • Numerical solution of the forward-speed radiation problem for a half-immersed cylinder advancing in regular waves is presented by making use of the improved Green integral equation in the frequency domain. The B-spline higher order panel method is employed stance the potential and its derivative are unknown at the same time. The present numerical solution of the improved Green integral equation by the B-spline higher order Kelvin panel method is shown to be free of irregular frequencies which are present in the Green integral equation using the forward-speed Kelvin-type Green function.

Vibration Analysis of Spin Etcher (Spin Etcher의 진동 분석)

  • 임경화;이은경;조중근
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • Spin etcher can process frontside and backside on the wafer, which is used for etching, stripping, cleaning and wafer reclamation. A new generation of spin etchers has been designed to meet 300mm wafer processing. The larger header and higher spin speed make vibration problem a severe problem in developing equipments. This study shows schematic process of solving practical vibration problems, where it is required to analyze the principal ca uses of vibration problem and find out the method of vibration reduction in spin etcher. The vibration under normal operation is measured in time domain and is analyzed in frequency domain. And modal parameters are obtained through modal test. Using the modal parameters from experiments, the model of finite element method is formulated. From diagnosis using many measurements and analyses, it can be shown that main cause of vibration is unbalance of head.

  • PDF

Design of a Robust Track-following Controller with Multiple Constraints (다중 제한 조건을 고려한 강인 트랙 추종 제어기의 설계)

  • Jin Kyoun Bog;Kim Jin-Soo;Lee Moon-Noh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.827-836
    • /
    • 2004
  • In this paper, we design a robust multi-objective track-following controller that satisfies transient response specifications and diminishes the influence of sinusoidal disturbance. To this end, a robust control problem with the multiple constraints is considered. We show that a sufficient condition satisfying the robust control problem can be expressed by linear matrix inequalities. Finally, the robust track-following controller can be designed by solving an LMI optimization problem. The effectiveness of the proposed controller design method is verified though experiments.

Numerical Methods for Wave Response in Harbor (항만내의 파도 응답에 관한 수치 계산)

  • D.J.,Kim;K.J.,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.3
    • /
    • pp.3-12
    • /
    • 1988
  • A natural or an artificial harbor can exhibit frequency(or period) dependent water surface oscillations when excited by incident waves. Such oscillations in harbors can cause significant damage to moored ships and adjacent structures. This can also induce undesirable current in harbors. Many previous investigators have studied various aspects of harbor resonance problem. In the percent paper, both a localizes finite element method(LFEM) which is based on the functional constructed by Chen & Mei(1974) and Bai & Yeung(1974) and an integral equation method which was used by Lee(1969) are applied to harbor resonance problem. The present method(LFEM) shows computationally more efficient than the integral equation method. Our test results shows good agreement compared with other results. This enhanced computational efficiency is due to the fact that the present method gives a banded symmetric coefficients matrix and requires much less computational time in the calculation of the influence coefficients matrix than the integral equation method involved with Green's function. To test the present numerical scheme, two models are treated here. The present method(LFEM) can be extended to a fully three dimensional harbor problem with the similar computational advantage.

  • PDF

An Optimal Algorithm for Aircraft Scheduling Problem by Column Generation (열(列) 생성(生成) 기법(技法)에 의한 항공기(航空機) 운항계획(運航計劃) 문제(問題)의 최적해법(最適解法))

  • Ki, Jae-Seug;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.13-22
    • /
    • 1993
  • The aircraft scheduling, which is used to determine flight frequency, departure times and aircraft type assignments, is main problem of airline's planning. This paper proposes a new algorithm for aircraft scheduling that is to maximize airline profits. This paper proposes a column generation algorithm to get an optimal solution of the continous relaxation not using all the feasible variables, but using only a limited number of variables that is generated whenever it is necessary. Using this algorithm, proposes an optimal algorithm to get an optimal integer solution of aircraft scheduling problem efficiently. The effectiveness of the column generation algorithm and the optimal algorithm is illustrated by the computational results obtained from a series of real airline problems.

  • PDF

Speech Enhancement Based on Psychoacoustic Model

  • Lee, Jingeol;Kim, Soowon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3E
    • /
    • pp.12-18
    • /
    • 2000
  • Psychoacoustic model based methods have recently been introduced in order to enhance speech signals corrupted by ambient noise. In particular, the perceptual filter is analytically derived where the frequency content of the input noisy signal is made the same as that of the estimated clean signal in auditory domain. However, the analytical derivation should rely on the deconvolution associated with the spreading function in the psychoacoustic model, which results in an ill-conditioned problem. In order to cope with the problem associated with the deconvolution, we propose a novel psychoacoustic model based speech enhancement filter whose principle is the same as the perceptual filter, however the filter is derived by a constrained optimization which provides solutions to the ill-conditioned problem. It is demonstrated with artificially generated signals that the proposed filter operates according to the principle. It is shown that superior performance results from the proposed filter over the perceptual filter provided that a clean speech signal is separable from noise.

  • PDF