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Abstract

Numerical solution of the forward-speed radiation problem for a half-immersed cylinder ad-
vancing in regular waves is presented by making use of the improved Green integral equation
in the frequency domain. The B-spline higher order panel method is employed since the
potential and its derivative are unknown at the same time. The present numerical solution
of the improved Green integral equation by the B-spline higher order Kelvin panel method
is shown to be free of irregular frequencies which are present in the Green integral equation
using the forward-speed Kelvin-type Green function.
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1 Introduction

The numerical solution of the three-dimensional forward-speed radiation-diffraction problem in
the frequency domain for a surface ship advancing in the free surface using the Kelvin-type Green
function(Brard 1948) has been reported by many researchers(Chang 1977, Guevel and Bougis
1982, Inglis and Price 1982, Chan 1990). It seems that all these methods are not conclusive as
pointed out by Sclavounos and Nakos(1990). It has been shown that a rigorous derivation of the
line integral leads to the exact Green integral equation with the Kelvin-type Green function in the
frequency domain(Hong 2000).

The solution of this exact Green integral equation is still susceptible to be non-unique since
there may be irregular frequencies. In order to avoid the tremendous computational effort to find
the irregular frequencies in the three-dimenstonal problem for a floating body, the two-dimensional
forward-speed radiation problem in the frequency domain for a surface-piercing cylindrical body
analogous to the three-dimensional problem, is treated in this paper by making use of the two-
dimensional Kelvin-type Green function(Haskind 1954).

In a steady translational problem in two dimensions, the linearized free surface boundary con-
dition breaks down since the perturbation velocity is no longer a small order of the incoming
flow velocity at the stagnation points on the free surface, i.e., the juncture points piercing the free
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surface. The present two dimensional problem has similar difficulties. However, the results of
present investigation in a two dimensional mathematical problem can be extended in a straightfor-
ward manner and applied to the three dimensional problem of physical interest.

The B-spline higher order panel method is employed since the potential and its derivative are
unknown at the same time in the integral equation containing the free surface line integrals. Si-
multaneous resolution of this kind of integral equation is hard to be carried out by the low order
panel method. The present numerical results show irregular frequencies in the two-dimensional
forward-speed Green integral equation associated with the Kelvin-type Green function in the fre-
quency domain while the solution of the improved Green integral equation is free of the irregular
frequencies.

2 Formulation of the problem

The fluid is bounded by the mean wetted surface S of a surface-piercing body and by the mean
free surface F' defined by y = 0,0f deep water under gravity. The body performs simple harmonic
oscillations of small amplitude with circular frequency w about its mean position which is moving
with a steady horizontal velocity u. Cartesian coordinates(z,y) attached to the mean position of
the body, are employed with the origin O in the waterplane W of the body at its mean position
and the y axis vertically upwards.

With the usual assumptions of an incompressible fluid and irrotational flow without capillarity,
the fluid velocity is given by the gradient of a velocity potential. The boundary condition is
linearized by assuming that both the magnitude of unsteady flow and the magnitude of steady flow
due respectively to the oscillation and steady translation of the cylinder are small enough to neglect
their products. Since the problem is linear, the governing equations for the unsteady potential

®(z,y,t) = Re{¥(z,y)e ™"}

can be given as follows:

V20U =0 in fluid region (1)

o = [—twai €y + (—iwag —uag) €q —iwas €3 x OM]-m on S 2)
, 2 0

[(—zw—u%) +ga—y]\11—() on y=0 3)

where ax(k = 1,2, 3) denote complex amplitude of surge, heave and pitch motions respectively,
O the center of rotation of the body, n the normal vector directed into the fluid region from S and
g the gravitational acceleration. The real motions are

ar = Re{ape ™1},

The potential must also satisfy the radiation condition at infinity.
Introducing elementary potentials ¢, (k = 1,2, 3), ¥ can be expressed as follows

3
U= —iw ) ary — uazds 4)

k=1
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Taking into account of (2) and (4), the following body boundary conditions for can be found:

%— = Tk k=12 (5a)
% =(%e3 xm)-ﬁ, M on S (5b)
n

Other boundary conditions for ), are identical to those for V.

3 Improved green integral equation

When a cylindrical body is present in the free surface, the fluid region D, is bounded by the mean
wetted surface of the body S, the outer free surface F. = F' — W and some arbitrary surface Sy
at infinity. Applying Green’s theorem to the potential ¢» and the Green function G over the fluid
region D, the following Green integral equation(GIE) can be obtained in two dimensions. The
similar derivation of a three dimensional problem is given in Appendix:

_+/¢—dl—2z’y[(1/fG) - (WG)p] + [(wgf)
~ W~ (e + (L) = g:fg‘” oo “

where v = w - u/g denotes the Brard number and the suffixes C' and D the two intersecting points
of S and y = 0 as shown in the Figure 1, where two-dimensional line integrals are to be calculated.

The two dimensional Kelvin type Green function G was first presented by Haskind(1954)
under integral form and its integrated form has been given by Hong(1978) as follows:

Glzp, 2a1) = —Re{log(ZP—2M) 4 1, 4 ) + ilm{ 1, — B} 7
2 Zp — ZM
with ) .

I = —(1_{_—47—){6(2 [Emi(C2) + 2in] — e [Ema (1) + 247} (8)

{eC4 [Emi(Cq) + 2im] — e<3Em1(C3)} for <1,
L={V =D ) . : ©

\/(_1T)[e tE1(G) — e E1((3)] for v2>3.
C] = —ZkJ(ZP _E]\/f)a J = 1’25374 (10)
k;jz2i5[1+27+(—1)i\/(1+4y)], j=1,2 (11a)

kj=22[1—27+ /1 -4vy), j=3,4 (11b)
where z = z + 4y is the complex plane and zp, z3s denote source and field points respectively.
E1(¢) is the complex exponential integral and Em; (¢) the modified complex exponential integral
defined as follows:

Er(C) for Im(¢) > 0,

12)
E(¢) —2im for Im(¢) < 0.

Emy(¢) = {
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Numerical results of (6) using the Green function (7) have shown to be satisfactory for an oscil-
lating circular cylinder advancing under the free surface where the line integrals are absent(Hong
1988). But for a surface-piercing body, it seems that some boundary conditions are missing in (6).
According to the theory of integral equation, an integral equation must contain all the boundary
conditions of the boundary value problem in question. Let the surface in contact with the fluid
be the positive side of the boundary surface and the other side of the same surface outside D, the
negative side of the surface. The wetted surface will be denoted by ST hereafter. According to
the potential theory, the potential jump across S which has been incorporated in (6) implies that
the condition ¢ = (1 is imposed on S, the negative side of S. In fact, it was necessary to impose
(P) = 0 when P lies on the negative side of the closed surface S'|J F. | J S as it is done in
the Green integral equation with the Rankine-type Green Function. Thus, in order to ensure the
uniqueness of the solution, it is necessary to impose the following condition:

v =0 on F; (13)
where F,~ denotes the negative side of F.

The condition on So can be omitted since 1) on Sy, vanishes in the limit.

But, since the integral over the boundary surface F, was already replaced by line integrals, it is
not desirable to reintroduce F, into the present Green integral equation. Instead, let us impose the
following supplementary condition for ¢ which can compensate for the condition (13):

W(P)=0 for PeW (14)

This condition is equivalent to

2
/Slﬁ-g—idl —2i7[(vG)c — (¥G)p] + ?[(w%f—)c - (w%%)D

o

_(%G)C—F(awG)D]:/&del on W (15)

oz s on

Combining the (6) with (15), we have the following integral equation, say, the improved Green
integral equation(IGIE) of overdetermined type(Hong and Lee 1999):

a(Pyoan) + [ w0ty — 20v (WGP M) = (WONGIP M)

u2 i

+ won 20 poan 22, - B D gp e ae)
9 TM TM TM

+ 2 6ot = [ 2D (e i

where
L forPes,
alP) = {S for P e W. (16a)
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4 B-spline higher order panel method

We will represent the potential and its derivative as a weighted sum of B-spline basis functions as
follows;

NvY—-1
Y=Y Y/Njtu) on S| UW (17)
7=0
8‘/’ ZzpvaN“‘) at  C and D (18)

where N;(u) are the p-th degree B-spline basis functions, j the potential control vertices.

The unknowns of the problem are now the values of the potential vertices, wv which are not
the potential in the physical sense. It should also be noted that the representatlon (18) permits
us to solve the present problem in a rigorous manner, where the potential and its derivative are
unknowns at the same time.

Discretization of the body surface in (16) into a set of curvilinear segments s, (s = 0,1, 2,,, N¥—
1), will then yield(Lee and Kerwin 1999)

NS—_1Nv-1

SOVL DI I NG = 206G~ (46
s=0 j=0
u? u? =N
?[(WJ—) (" —)D] - ?{Gc[ jZ:; ¢}’8—;]C (19

Nv—1 N5-1
N 5,
_GD[Z w;_axﬂ]g}: }: /S%Gdl, PeSUW
7=0 s=0

The number of unknown potential vertices NV is greater than the number of the curvilinear seg-
ments or panels since NV = N¥ + p according to the properties of the B-spline basis functions.
Since the (16) is overdetermined, we can place any number of control points N on S | J W which
is greater than or equal to NV. This linear system will be solved by the usual Gauss elimination
when N¥ = NV and by a least square approach when N* > NV(Hong and Lee 1999).

S Numerical results and discussion

The hydrodynamic pressure forces due to the unsteady potential can be obtained as
F=-— / prdl (20)
s

The pressure can be obtained by making use of the Bernoulli equation:

9 9

P==rar ~ s, (21
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Substituting (21) into (20) and introducing non-dimensional added-mass and wave-damping coef-
ficients M, and Dy, we have the following expression for F;:

3
Fy=—pAY [Myi + wDiax],  i=1,2 (22)
k=1

where denotes the sectional area of the cylinder.
The hydrodynamic coefficients of a half immersed circular cylinder are computed for various
Froude numbers, F,, = —\/Z=D’ based on the diameter of the circle D = 1. They are all plotted as

functions of K = w+/D/g.
After extensive numerical tests for the convergence, 30 higher order panels with 60 control

points in S are employed as well as 38 control points in W to show the present numerical values
for four different Froude numbers: F,, = 0.0001. F,, = 0.05, F,, = 0.075 and F,, = 0.099.
The last Froude number is chosen in order to see the behaviour of the numerical solution in the
vicinity of the critical Brard number v, = 1/4(K - F,, = 1/4) and to compare the present results
with those in the time-domain with Rankine panel method reported by Prins and Hermans(1994).
The first Froude number is chosen to compare the present results with numerical results at zero
forward speed(for example, (Hong and Lee 1999) and it has been found to be practically equal.

We have found numerically that the irregular frequency exists in the Green integral equation
(6) while the improved Green integral equation (16) is free of the irregular frequency as shown
in Figures 2 through 13. The hydrodynamic coefficients calculated from the solution of (6) are
denoted by GIE and those from (16) by IGIE in the figures. We see also continuous fluctuation in
the curves denoted by GIE for £, > 0.075.

The changes of hydrodynamic coefficients calculated from the solution of the improved Green
integral equation, with respect to the Froude number have been presented in Figures 14 through
17. We see that the curves for F,, < 0.075 are smooth but the curves for F}, = 0.099 fluctuate
as the Brard number approaches v.(K ~ 2.5 for F, = 0.099). The peak values at ¢ are
not surprising since the Green function fails there as shown in (9). But for v > ¢, the curves
denoted by F,, = 0.099 are not reliable. The present body intersects at right angle with the mean
free surface and the horizontal derivative of the potential is well known divergent at C' and D.
Therefore even though the numerical solution of (16) is bounded, its derivative with respect to
x may not be determined. Thus the derivative intervening in the calculation of the pressure in
(21), would result in the unreliable values of hydrodynamic coefficients for relatively high Froude
numbers where the role of line integrals gets more important. In Figures 18 through 21 the real
and imaginary values of potential as a function of z-coordinates for F,, = 0.0001 and F;, = 0.099,
are presented to verify the diverging phenomena of the horizontal derivative of the potential at C
and D.

The present numerical results are considered similar to those of Prins and Hermans for F;,, =
0.099, but clearly differ in values for v < y¢. Prins and Hermans have not reported their numerical
results for v > 0. Direct comparison between Prins and Hermans and ours is not advisable,
since they linearized the free surface boundary condition with respect to the steady double-body
potential. This is the major source of differences between the two numerical results.

Some numerical results using the low order panel method has also been obtained but they are
not comparable to the results computed by the B-spline higher panel method since they do not
converge no matter how great the number of panels may be. It seems that it is hard to obtain
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useful results by making use of the low order panel method when the potential and its derivative
are unknown at the same time in the integral equation.

6 Conclusions

1. The exact formulation of the Green integral equation associated with the Kelvin-type Green
function in the frequency domain for an oscillating surface-piercing body advancing in the
free surface, has been presented with correct free surface boundary conditions.

2. Ithas been shown that there exist irregular frequencies in the solution of the two-dimensional
Green integral equation for a surface-piercing cylinder, which occur far more frequently than
the irregular frequencies in the zero-speed Green integral equation.

3. The solution of the improved Green integral equation for an oscillating surface-piercing
cylinder in steady horizontal translation, is shown to be free of irregular frequencies.

4. Finally, it has been shown that the present numerical method, say, the B-spline higher order
Kelvin panel method provides accurate numerical solutions of the integral equations where
the potentials and their derivatives are unknown at the same time.

The present method is equally applicable to the three-dimensional problem, and the result will be
less critical, even for higher Froude numbers, to the numerical procedure since the line integrals
are less singular than in two-dimensional problem.
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Appendix

Exact Formulation of the Green Integral Equation for the Three-Dimensional Forward-
Speed Radiation-Diffraction Problem

A.1 Linearized boundary-value problem in the frequency domain

A ship is moving with mean forward speed U in the free surface of deep water under gravity and
in the presence of plane progressive sinusoidal incident wave of small amplitude ag. Let oxyz be
a Cartesian co-ordinate system attached to the mean position of the ship, with z vertically upward,
z in the direction of forward meotion and o in the mean waterplane W. The ship performs simple
harmonic oscillations of small amplitude about its mean position with circular frequency w which
is equal to the encounter frequency of incident wave. It is assumed that the disturbance of the free
surface due to the forward motion is also small.
With the usual assumptions of the incompressible, inviscid fluid and irrotational flow without
capillarity, the fluid velocity can be given by the gradient of a velocity potential & which satisfies
the Laplace equation,

V20 =0 (A1)

in the fluid region.
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Under the assumptions given above, ® at P in the fluid region can be decomposed as follows:
&(P,t) = ®g(P) + Re{U(P)e ™'} (A2)

where ® g denotes a steady potential known as the Neumann-Kelvin potential, ¥ a complex-valued
unsteady potential and w the encounter frequency of the incident wave. The velocity potential of
incident wave is as follows:

(I)o = Re{\IJOe_i“’t} (A3)
where a _ .
Uy = _ 909 kolzti(zeos fysinB)] g, = (wo — UkgcosB) >0 (A4)
(]
and a ' .
Ty = _ 209 kolz—i(zcosftysinB)]  gor ., = (Ukgcos 3 — wq) >0 (A5)
wo

where g is the gravitational acceleration, 3 the angle between the phase velocity of the incident
2
wave and the forward velocity of the ship, wy the circular frequency of incident wave and kg = “;70

the wavenumber expressed in a space-fixed co-ordinate system ozyz given as follows:
T=z+Ut, y=y, zZz=z2 (A6)

The equation of the mean free surface is
z=0 (A7)

and the linearized free surface boundary condition for ¢ on z = 0 is as follows:

0 0 d

= -U=—)4g—|®=0 =0 A8
[ ot 833) +g(‘92] on oz (A8)
Substitution of (A2) to (A8) yields the following free surface boundary conditions for $g and ¥

respectively:

92 ]
[UQW +g$] Pg=0 on 2z=0 (A9)
[(—iw—U%f—i—g%] V=0 on 2=0 (A10)

The forward speed U is of O(1). Under the assumption of small amplitude oscillation, the dis-

—
placement vector A (M) of a point M on the wetted surface .S of the ship in its mean position
is of O(e) where €, being as small as the wave slope, is the measure of smallness in the present

study. The expression of Z(M ) is as follows:

A(M) = Re{@(M)e™™t}, MeS (A1l)
3 — —
T(M)=) ar€r+ 0 xOM, McS (Alla)
k=1
. 6
0 => arers (Al1b)
k=4
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where ax(k = 1,2,,,6) denotes complex valued amplitude of surge, sway, heave, roll, pitch, yaw
respectively and O the center of rotation of the ship.

It should be noted that the time-harmonic quantities correspond to the real part of terms involving
e~™* which will not be shown hereafter unless its presence is necessary.

Applying impermeability condition on .S, the following body boundary condition can be found:

— —
(M+ 0 x7) - V(@s+P)=(n+ 80 x7) Uey —iwd) (A12)
where 7 denotes a unit normal to S directed into the fluid region, at its mean position and (7 +
9 x 7 ) the Taylor expansion of the normal at its instantaneous position to ‘the first order. The
above condition can also be found from its alternative expression given in the literature(Timman
and Newman 1962).

Assuming ®g is of O(e) and neglecting second-order quantities, the following linearized body
boundary condition for ®s and ¥ can be found respectively:

9% _Uny on S (A13)
on

oy PR

5 = —iwa -+ Ulasng — agnz) on S (A14)

With these linearized boundary conditions on S and on z = 0, the unsteady potential and the
steady potential problems can be solved independently and the latter will be dropped from the
present study.

The unsteady potential ¥ can further be decomposed as follows:

U =Wo+ V7 + g (AL5)

where the sum of ¥ and W7 is known as the diffraction potential and U g the radiation potential
which can be decomposed as follows:

6
r=—iwY ap¥—Ulag¥s — a5¥s) (A16)

Then the body boundary conditions for ¥ (k = 1,2,,,7) are
v,

o ng on S, k=123 (Al7a)
n
%:(?k_3XOM)~W on S, k=4,56 (A17b)
0
ov ov
3n7 8710 5 (A18)

The potentials ¥ (k = 1,2,,,7) also satisfy the free surface boundary condition given by the
equation (A10):

0 4 0
— — | ¥ =0 F, k=1,2,,,7 Al9
It is also assumed that they vanish at infinity as ;},—o where 7°° denotes the distance from the ship.
They must also satisfy the radiation condition presented by Brard(1948).

Here, the potential boundary-value problem for ¥y (k = 1,2,,,7) will be solved by making
use of the Green integral equation.

(—iw—U
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A.2 Brard’s green function

The Green function derived by Brard(1948) characterizes the potential induced at P by a pulsating
source of unit strength at M advancing under the free surface with uniform velocity Ue;. The
point M is the so-called source point and P the field point. It has been obtained as follows:

G(P,M,t) = Re{G(P, M)e "} (A20)
where
G(P, M) = Go(P,M) — G1(P, M) + G¢(P, M) (A21)
11
GJ (Pa ) An T s 07 (A22)
ri={(@p —zm)? + (yp — yar)® + (zp — (=1 20)%}2, j=0,1 (A23)
1
GJ(P,M):Q(HlJrHﬂ (A24)
+% o0 1 =
H = / d@/ —eSgkdk, 1=1,2 (A25)
-z Jo Dj

Dy = w—(—1)"VUkcos 0] — gk + iv[w — (-1)H DUk cos 6], 1=1,2 (A26)
C=k{zp+ zar +i[(xp — 2pr) cos 6 + (yp — yar) sin 6]} (A27)

where v is an artificial damping parameter infinitely small, positive, which will determine the path
of integration in the complex plane K associated with the variable k shown in the expressions of
H; and Hs.
The function Gy is the Rankine-type Green function which is singular when P = M and regular
otherwise. The function G; and G are regular for zp < 0.

Brard’s Green function satisfies the following equations:

VEG(P,M)=0 for P#M (A28)
(—iw — U—(?—)2 ~1—gi GP,M)=0 for zp <0 and zp<0 (A29)
8.’131) 821:

In fact, Brard derived first a Green function F(Zps,Yas, Za, TPYpZp,t) in a space-fixed co-
ordinate system oxyz, associated with a source whose intensity and horizontal speed are arbitrary
functions of time. The so-called damped free surface condition given below was used to construct
F(P,M,t):
0? 0 0 PP M) = B

<5t—§+1/5£+g%> (P,M,t)=0 on 2zp=0 (A30)
Next, G(P, M,t) was derived from F(P, M,t). Finally, he presented a radiation condition for
G (P, M, t) through the analysis of its far-field behavior by making use of the Cauchy-Lord Kelvin’s
principle of stationary phase. Thus, it can be said that the radiation condition for G(P, M) is sat-
isfied when the artificial damping parameter is present in the denominators D1 and Ds. Since the
Green function G(P, M) is of O(2), it tends to zero as r — oo.
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The Green function G(P, M) also satisfies the so-called adjoint free surface condition

2+ goo
81‘]\/[ gaZM

(—miw+U G(P,M)=0 for zp<0 and 2y <0 (A31)
which can be derived from the free surface condition (A29) according to the reciprocal property
of the forward-speed Green function(Timman and Newman 1962, Brard 1972).

The integrations with respect to & in H; and H» can be done analytically by making use of the
complex exponential integral F1(¢) Hong(1978). This method of integration was generalized by
Guevel(1979) and was applied to the three-dimensional radiation-diffraction problem with forward
speed by Bougis(1980).

A.3 Green integral equation

When a ship is present in the free surface, the fluid region D, is bounded by the mean wetted
surface of the ship S, the outer free surface F, = F' — W and some arbitrary surface S, at
infinity. Let C' and Cw, denote the closed intersection contours of F’ with .S and Sy respectively.
Applying Green'’s theorem to the potential ¥ and the Green function GG over the fluid region D,,
the following integral identities can be obtained:

a¥(P) = // [T(M) 0GP, M) 8\II(M)G(P, M)lds, for zp <0 (A32)
BS on M on M

where 7 denotes a unit normal to the boundary surface directed into the fluid region D, and
BS=S|UFelS*™.
The number « in the left-hand side of (A32) takes the value of 1, % or 0 according as the field
point P lies inside, on and outside the closed surface BS. The ¥ and g—i’ on the boundary surface
denote the densities of sources and normal doublets known as the fundamental hydrodynamic
singularities, distributed over there.

Since ¥ and G tend to zero as T—}.g the integral over S, vanishes in the limit and, in D,, we

have
// aG P, M) a\p(M)G(R M)lds - I, for p<0  (A3D
anM aTLM
where 3G . o
Ir = // ) _OYM) o p aylds, for zp <0 (A34)
Fe 8nM 871”1

Substitution of the free surface condition (A19) and the adjoint free surface condition (A31) into
the normal derivatives of ¥ and G in (A34) respectively, yields

In=1I+ Iy (A35)

where

N OG(P,M)  DU(M)
I, = —2iy / /F (V) TFRE 4 S RGP M) ds

N / / %[\D(M)G(P,M)]ds, for 2p <0 (A36)
F. OTM
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and

2
- U_/ 9 g 26 BM) OV b apyids, zp <0 (A37)
F, Ozp Oz m Oz

The = in (36) is a non-dimensional parameter known as the Brard number.

y=2¥ (A38)
g

Application of Stokes’s theorem to (A36) yields
I, = —2z’7/ V(M)G(P, M )dyn + 21'7/ U(M)G(P,M)dypr;, zp <0 (A39)
Coo C

where the positive directions around both C' and C,, are defined counterclockwise when one
would see them from above the free surface.

The line integral of the product ¥ and G along C, vanishes in the limit since both ¥ and G tend
to zero as T%.o and we have

I = 22'7/ U(M)G(P,M)dyy, zp<0 (A40)
C

Similarly, application of Stokes’s theorem to (A37) yields

Iy — v (M 0G(P,M) 0¥ (M)

G(P,M)|dyy, zp <0 (A41)
g C azll‘M 83:M

Substitution of (A40) and (A41) into (A35) yields

L v OG(P, M)
1 i [0 -2 [ 2L

_0¥(M)
0T

G(P,M))dyn, 2zp <0 (A42)

Substituting the final expression of I into the integral relation (A33) and taking account of the
potential jump across S, we can obtain the following Green integral equation for W:

%\IJ(P)+/AW(M)%—%%MM—2i7/C\I/(M)G(P,M)dyM

U2 / W (M) 0G(P, M) B 8\IJ(JVI)G(P’ M)|dyns (A43)
8$M axM

//NM} M)ds, PeS
onuy

The derivative of W with respect to s can be decomposed as follows:

OU(M) _ . U(M)_,  IU(M)4

8T (M) _,
= €1 [ anM M 8ZM M 87—M

TM], MeS (A44)
oxrpm
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N .
where [ is a unit vector tangent to C' whose direction along which one, traveling in D., would
proceed in keeping W to his left, is defined positive and 7 a unit vector tangent to S forming a

. = T =
right-hand vectortriad 7 = | x n.
Substitution of (A44) into (A43) yields

// 8GPM)d +2ify/C\I/(M)G(P,M)dyM

U2 OG(P,M) _, OU(M)—  8¥(M)_,
v (wm—é@—)—el [ al( ’zM+-5%TMJG(P,M>)dyM (A45)

U? [ 0¥ (M
// G(P,M)ds—_ (& )G(P,]V[)?l-ﬁMdyM, PefS
onpy 9 Jo Ony

It should be noted that the expression of the Green function in the line integral can be reduced as

follows
G(P,M)=GyP,M) on C (A45a)

since the first and second terms in the right-hand side of (A21) cancel out when z3; = 0.

Bougis(1980) presented a Green integral equation for W. But, in his Green integral equation,
the sign of the line integral involving the Brard number is minus since he used the following
condition:

8 9
¥ +g

[(—iw — U [G(P,M)=0 for zp<0 and zy <0 (A46)

8£EM azM

It is evident that Brard’s Green function does not satisfy the condition (A46) which is different
from the adjoint free surface condition defined by (A31). Besides, he had to assume that

/ / G(P, M)ds = 0 (A47)
03:1\/[

in order to obtain the line integral associated with the Brard number. There is no reason that
(A47) holds. Thus the Green integral equation by Bougis is not complete. More recently, the
same mistake has been made by Hong in his study on the two-dimensional radiation probiem of a
cylinder advancing in the free surface(Hong 1995).

The equation (A45) is the Green integral equation which contains the correct free surface
boundary conditions(Hong 2000).
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iy

Figure 1: Coordinate system
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Sufge Added Mass Coefficients
14 Fn=0.05

Figure 2: Surge added mass coefficients
computed by IGIE and GIE for F'n = 0.05

Surge Wave Damping Coefficients
F_=0.05

Figure 4: Surge wave damping coeffi-
cients computed by IGIE and GIE for
Fn =0.05

Heave Added Mass Coefficients
. F_=0.05

Figure 3: Heave added mass coefficients
computed by IGIE and GIE for F'n = 0.05

Heave Wave Dampiné Coei‘ficients

, F,=0.05

08

Figure 5: Heave wave damping coeffi-
cients computed by IGIE and GIE for

Fn =0.05
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Surge Added Mass Coefficieg
ve F, =0.075

" Heave Added Mass Coefficients
|, F,=0075

Figure 6: Surge added mass coefficients
computed by IGIE and GIE for F'n =
0.075

KD,,

Surge Wave Damping Coefficients
. F_=0.075

Figure 8: Surge wave damping coeffi-
cients computed by IGIE and GIE for
Fn =0.075
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Figure 7: Heave added mass coefficients
computed by IGIE and GIE for F'n =
0.075

"~ Heave Wav;Damping Coefficients
, F,=0.075

08

0.2HA

.,,l,...|....
\00 1 2 3

Figure 9: Heave wave damping coeffi-
cients computed by IGIE and GIE for
Fn=0.075
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SAurgé Added Mass Coefficients
.. F,=0.099

Figure 10: Surge added mass coefficients

computed by IGIE and GIE for F'n
0.099

F_=0.099

Figure 12: Surge wave damping coeffi-
cients computed by IGIE and GIE for
Fn =0.099

W Sﬁ&;e Wave Dan-ip-in_g éc;;;‘fircient'sﬁh 7

Heave Added Mass Coefficients

F_=0.099
6

A

M22

Figure 11: Heave added mass coefficients

computed by IGIE and GIE for F'n
0.099

Figure 13: Heave wave damping coeffi-
cients computed by IGIE and GIE for

Fn =0.099
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Surge Added Mass Coefficients by IGIE
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Figure 14: Surge added mass coefficients
computed by IGIE

Surge Wave Damping Coefficients by IGIE
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Figure 15: Heave added mass coefficients
computed by IGIE

Heave Wave Damping Coefficients by IGIE
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Figure 16: Surge wave damping coeffi-
cients computed by IGIE
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Figure 17: Heave wave damping coeffi-
cients computed by IGIE
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Real Part of Surge Potentials for K= 3

o3
o
|

——— F,=0.0001

———- F,=0099 |

| S 2.
0.25 0.5

S
o
o
N
al

L= ol

Figure 18: Real part of surge potentials on
the wetted surface for K = 3

Real Part of Heave Potentials for K= 3

0.5

04

03

0.2

Re &

(AN 1 ———— F,=0.0001

— —A—~- F,=0.099

o4

0.1 H

Figure 20: Real part of heave potentials
on the wetted surface for K = 3

Imag Part of Surge Potentials for K=3

osf}
[l
.y
H
0414 — = F,=0.0001
——A—- F 20009
S
£ 0.2 L
0 [ el Aol SASBND,
02}
1 1 1 1 I
Q0.5 -0.25 Q 0.25 Q.5
X

Figure 19: Imaginary part of surge poten-
tials on the wetted surface for K = 3

Imag Part of Heave Potentiais forK = 3
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Figure 21: Imaginary part of heave poten-

tials on the wetted surface for K = 3
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