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Numerical Methods for Wave Response in Harbor

D.J. Kim* and K.J. Bai**

(From T.S.N.A.K., Vol.25, No.3, 1988)

Abstract

A natural and an artificial harbor can exhibit frequency (or period) dependent water sur-
face oscillations when excited by incident waves. Such oscillations in harbors can cause sig-
nificant damages to moored ships and adjacent structures. This can also induce undesirable
current in harbor. Many previous investigators have studied various aspects of harbor reso-
nance problem.

In the present paper, both a localized finite element method(LFEM) which is based on
the functional constructed by Chen & Mei(1974) and Bai & Yeung(1974) and an integral
equation method which was used by Lee(1969) are applied to harbor resonance problem,
The LFEM shows computationally more efficient than the integral equation method. Our
test results show a good agreement compared with other results. In the present
computations, specifically two harbor geometris are treated here, The present method by

LFEM can be extended to a fully three dimensional harbor problem.

1. Introduction

The knowledge of the wave responses in a
harbor due to an incident wave is prerequisite for
the safety of the anchored ships and offshore
structures in the harbor. There are many cases of
severe damages on the anchored ships due to the
heavy storms. Accordingly there has been a
growing need to develop a rational and efficient
prediction method for the motion responses of the
anchored ship and offshore structures in a harbor.
This prediction method can also provide a valu-
able knowledge in the harbor resonance and
guidelines for a harbor design.

During last twenty years there have been many
investigations on a harbor resonance and wave
responses in a harbor, For example, Kravtchenko
& Mcnown [1] investigated an eigenvalue prob-
lem for a closed basin, Lee [2], Hwang & Tuck
(3] and Mattioli [4] treated harbor oscillations by
a method of integral equation. As another method
of solution, Berkhoff [5, 6], Chen & Mei [7] and
Bettes & Zienkiewicz [8] applied finite element
methods to the problem. There were many
investigations on a rather special harbor
geometries, €.g., a rectangular or circular shapes
where a more mathematical analysis is possible.
However, this method has a severe limitation in
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the application for a general harbor geometry.

In the present paper, we employed the localized
finite element method which was successfully ap-
plied to water-wave problems by Bai & reung [9]
and Kil [10). By
shallow-water theory, the problem is reduced to a
two dimensinal problem on a horizontal plane. We

introducing a linear

also made another set of computations based on
an integral equation. These two sets of computed
results are compared and discussed. We also dis-
cussed on the harbor resonance and harbor para-
dox previously discussed by Miles & Munk [11].

2. Mathematical Formulation

2.1 Linear Shallow Water Theory

As in Fig. 1, by assuming that the bottom topo-
graphy has a mild slope, one can obtain the fol-
lowing equations in terms of velocity potential
#(x,y) (See Berkhoff [5, 6] or Mei {12]) :

vV -(CC, V¢)+(92-6C—g¢:() (1)
® =gk tanh kh (2)
«)
-0
k
C,=nC

Incident wave

WWM

mild-slope bottom

Fig. 1 Coordinate system and bottom topography
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C=wlk the phase velocity, and C,=aC the
group velocity. Here

Zkh )

Ly 2kh
n=g{l+ =5

By assuming kh is a small order of 1, i.e,
kh«1, we obtain n=1 and

C=C,=V gh (3)

By using this relation Equations (1) and (2)
become

\Y -(hV¢)+—‘;—2—¢=0 @)
w’=gk® (5)

Equation (4) can be further reduced to follow-
ing two-dimensional Helmholtz (or Weber)
equation for a constant depth :

V 2%+k%=0 ®)

w?=gk® h @

2.2 Governing Equation and Boundary Conditions

The coordinate system and harbor configuration
are given in Fig 2. The water depth in the
harbor is denoted by h(x,y). We assume that all
the boundaries are vertical wall-sided and the
coastline boundary gives a perfect reflection.
Under usual assumptions made in the scope of
the potential theory, the motion is assumed to be
time harmonic with the frequency of the incident
waves, Furthermore, the water depth outside of
the harbor is assumed to be constant. The entire
fluid domain is now divided into two sub-domains,
ie., (Q and Q, as shown in Fig. 2. The boundary
J denotes the juncture boundary of the two
sub-domains, Now we can express the original
problem in the following two problems defined in
each sub domains, Here ¢(x,y) is defined in Q,,



IS Domain Q,
y (constant depth)

Domain Q,
(variable depth)

Q, : variable depth
Q, : constant depth

S : solid boundary inside the harbor
J : matching boundary
AB & CD : coastline

Fig. 2 Harbor model configuration

where i=1, 2. In the harbor, i.e., the sub domain,
Q,, we obtain

v - v ¢1)+Q;¢1=o inQ, (8)
i¢1—=0 on$S (9)
an

In the outer domain, Q,, we obtain

v 2¢2+k2¢2=0 in Qz (10)
% on AB and CD ()

Ilzll"n ¢2z¢0 r2=x2+y2 (12)
¢2:¢0+¢s

(13)
¢0=¢i+¢r

Here ¢, denotes the incident-wave potential, ¢,
the wave potential due to the perfect reflection
along the coastline boundary, i.e., the coaslines
denoted by AB and CD, and ¢, the scattered
wave potential due to the presence of the harbor.
Along the juncture boundary J, we require.

#1=0; (14)
and

a6, 99,

o (15)

Here the normal vector n is taken outward in Q,,
and inward in Q.

Since we assumed a perfect reflection along the
coastline AB and CD, the sum of incident and
reflected waves, denoted by ¢, should satisfy.

2
?ﬂ:ﬁ: on AB and CD (16)
an a3y
Then Equations (10) through (13) reduce to
the following equations in terms of the scattered
velocity potential, ¢ :

V 26, + k%, =0 inQ, (17)

o4

> = =) on ABand CD  (18)
n

lim 4,0 (19)

e

The solution of Equation (17) through (19) is
%H(()“ (kr) where H is the Hankel function.

2.3 Amplification Factor

It is convenient to define an amplification fac-
tor to describe the wave response in a harbor. We
define the amplication factor, R, as the ratio of
the wave amplitude in the harbor to the ampli-
tude of the standing wave, ¢, which is obtained
by assuming the harbor entrance is closed. This
can be written as

_ l-’il(x-y-f)l max
[ﬁl(x#y’[) ‘ max + lﬂ,.(x,}' ’t) [ max

(20)

Here n{xy,t) denotes the wave elevation and
the subscripts, 1, 1, and r are same as those de-



fined previously in the velocity potential
functions. If we represent

#i10ep ) = Rely (x,y)e ~51} (21)
ndx.p) = Ae~*{xcosu+ ysina) (22)
nlx ) =nlx,~y) (23)

where A is the ampitude of the incident waves, a
the angle of incidence of the incoming wave
measured from the x-axis, and k the wave num-
ber. Then Eq. (20) reduces to

(cy)
R= |22 (24)

3. Localized Finite Element Method

The key idea in the localized finite element
method is combining the usual finite element

method in the harbor sub domain and the
expressions by the known analytic solution with
unknown coefficients in the truncated infinite sub
domain (outer sub domain) through matching
along the juncture boundary, This method has
been successfully applied to free surface wave
problems in Ref. [9, 10].

3.1 Construction of Variationat Functional

Following Bai & Yeung [9], Kil [10], and Mei
[12], for a variational problem equivalent to
Equations (8), (9), (14), and (15), a variational
functional can be defined as

2
Figy, o} = j f ) v $—Rdxdy
1

2
+ J‘Jh[(%¢2 + ¢/);i]ds
f Wl —24,~ a‘i‘f")ds (25)*

Then an equivalent variational problem can be
written as

7

In order to show that this variational problem
is equivalent to the original boundary value prob-
lem, we substitute Eq. (25) into Eq. (26) and ob-
tain

Fig), ¢2}=‘[ j n[hv Y 5¢1—ﬂg2—¢15¢1] dxdy
1

a9, 5¢2

+jh[<—a¢z 51— (5, 8)— ) ds
] a9y 269,
—-z—Lma 36,——4y) ds (27)

By using Gauss theorem and integration by
parts, the first term in Eq. (27) becomes

j f hV 4,V 3¢, dxdy
1

=”Q[v - (hogy V $) — 8V + (hV ) ldxdy
1

“[f o
1

+ h6¢1i¢-l—ds (28)

- (Y gy dxdy+ ha¢1ids

Since ¢, is known function and its variation is

zero, we have
34s=0¢, (29)
By using Eq. (28) (29), Eq. (27) reduces to
SF{g,, b}

== [[_s6lv (h¥ ¢1>—~‘§¢1]dxdy
Q1

7
+{ Lo —Z%———‘}”})—afz ($1~4p) 1 ds
+ h5¢1—¢‘—ds (30)

In deriving Eq. (30), the following relations
\31) and (32) are used.
If we apply the Green theorem for ¢, and g, in

,, we obtain

* In the original paper(J. SNAK Vol.25, No.3) the last term in Equations (25) (27) and (33) was missing by mistake
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L4 )3,V 2, +Lpldxdy
gh gh

%,
+.[ (Gt —42-06,) ds=0 (31)

N

Here 2Q, is the closed boundary of Q, i.e., )
=]+ AB+CD+Cp, and Cy denotes a semicircular
poundary with the radius r as r goes to infinity
for y>0. By using Equations (11), (12), (13),
(18}, and (19) in Eq. (31), we obtain.

[ (%w —$,2-54) ds=0 (32)

From variational equation Eq. (30), one can re-
cover the original boundary value problem,

3.2 Approximate Solution in the Harbor

In the previous section it was shown that in the
variational problem equivalent to the original
problem the functional F is defined only in {,; and

its boundary, i.e.,

P g = ([ T 7= 2 Fixdy

n

+ { h (—¢ ¢1)—-]ds

J
-‘é_ ‘\ 3¢i¢5_ ix ¢()] dS (33)

Jan

The variational problem,

Figh, ¢3=0 (34)

is to find the functions which makes the func-
tional stationary with respect to ¢; and ¢,.

In the present variational method an advantage
is to look for an approximate solution in a wider
class of admissible function space since any func-
tion and its first derivative which are square inte-
grable are admissible now due to the integration
by parts used in the construction of the func-
tional.

N,
element, €
, N3
n
N, N,
(—-1,1) (1,1
4
(—~1,-1) {1,-1)
N, N;

Master element (trial function basis)

Fig. 3 Finite element sobdivisions

The next step in the numerical procedure is to
subdivide the harbor domain Q; by finite number

of finite elements as shown in Fig. 3, In the pres-

ent computations, a four-node linear iso-

parametric element is used. By introducing trial
function basis N¢(xp), (i=1,--,4) the velo-
city potential function #(xy) may be re-

presented by
¢, =INFig T (35)

where [N and {g,}¢ are the trial function basis

and the value of the potential function at the cor-
responding node, respectively. These can be
expressed by

[N =[N¢, NS, N4, N¢]
{¢I}e = [¢71’ ¢7’2v ¢<1/39 ¢;’4]



where the superscript T denotes the transpose
of the vector and the trial function basis has the
value of one at the corresponding node and zero
at other nodes. Then the trial function can be

written as
¢l = g[ [N]" {¢I}‘
N
= §1 B NAx ) (36)

where E and N are the total numbers of elements
and nodes. Here N{x,y) is the global basis func-

tion,

N=La-ou+y
v=da-a0-
NJ=§(1 +E(1—7)

N4=§(1+¢>(1—,7)

3.3 Representation of Approximate Solution in the
Outer Sub domain

As mentioned in Section 2.1, the analytic solu-
tion for Equations (17) through (19) for the outer
sub domain €, is Hanke] function, As shown in
Fig. 4. we denote a point on the matching bound-
ary J by p(x,y). Then the pulsating source
located at q(x’,y") can be written as

matching
boundary

inside the
harbor,

Fig. 4 Matching boundary & source distribution

Glp.g) =-H{kr)

= ’Ti(y oy 37
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where r={(x-x")2+(y-y)217% and J, and Y, are
Bessel functions of the first and second kinds, re-
spectively. Instead of pulsating source dis-
tributions, one can also utilize Fourier-Bessel
expansions as in Mei [12],

Any solution of ¢, can be expressed by source

distribution u(q) along BC, i.e.,

#:p)=gip)+4,.p)+4.(p)
=4{p) +4.(p) + [ wp)G(p:q) ds (38)

When we subdivide the harbor entrance BC by a
number of small segments and assume a point
source is located in each segment, we can ap-
proximate the potential as

M
¢J = ¢i + ¢r + iz:l Moy \P,'(X,)’) (39)

where M is the number of source points and ¥, is

source function at the i1-th point,

3.4 Numerical Calculations

When we substitute the expressions in Egs.
(36) and (39) into Eq. (34), the following matrix
equation can be obtained.

aFigy, ¢yl

£

(40)

aFig,, 4}
Fphoi

The final matrix equation has a nice and desi-
rable property of being banded. A more details in
the numerical procedures can be found in Kim
F1g
116].
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4. Numerical Results and Discussions

Computations are made for two specific harbor
geometries as shown in Fig. 5. Two different
methods of solutions are developed : One by
LFEM and the other is by the method of integral
equation following Lee[2]. Throughout the
computations the incoming wave is assumed to be
incident normally to the coastlines, «==90°. The
computed results of the amplification factor (R)
are shown with respect to the nondimensional
wave number (KL) where L is the characteristic
length of the harbor. The computed results are
compared with those of Lee [2], Hwang & Tuck
[3], Mattioli [4], and Mei [7]. For Model 1
computations are made for both with and without
breakwater and also for depth variations. Model 2
is a simplified model for the Hangdong harbor in
the City of Inchon, Korea. For this model the

y
/—-——matching boundary
X
wwn 7T
b a=2.38
b=12.25"
Model 1
a
y .
X l—matching boundary
T T ’
a
f
a=3.
A b=10.
c=3.

b d==5.
e=2,
f=5.

d
Model 2
B

e

Fig. 5 Two harbor models

depth is assumed be constant.

4.1 Comparisons between Results of Two Different
Methods

In the computations by the LFEM, the number
of elements was increased as the value of KL
increased. In Fig. 6 and 7 the computed result of
Model 1 for a constant depth by LFEM is
compared with those obtained by other methods.
Agreement is remarkable. It is found that in a
simple geometry like Model 1, harbor resonance
does not appear for KL > 5. However, in Model
2, the presence of the resonance was still
pronounced when the wave number increases as
shown in Fig, 15 and 16.

Fig. 8 shows the result of Model 1 for a
linearly varying depth. It is of interest to note
that as the water volume of the harbor decreases,

8.00 — L.FEM
7.00 Mei
6.00 A ¢ Integral eq.
5.00 ‘
R 400 _ i
3.00
N
2.00 \ ’
1.00
.00 — - - {
.00 1.00 2.00 3.00 4.00 5.00
KL

Fig. 6 [ R] for constant bottom

8.00 — L. FEM
°
7.00 ;Jiev:ang &
6.00 . Tuck
5.00
R 4.00
3.00
2.00 )/'F\
1.00 4 N
.00 ' ; —
.00 1.00 2.00 3.00 4.00 5.00
KL

Fig. 7 { R] for constant bottom
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* Configuration of variable depth
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Fig. 8 [ R] for tinearly varying bottom

the resonant phenomenon becomes more pro-

nounced.

4.2 Harbor with Breakwater

Fig. 9 shows the results of amplification fac-
tor for Model 1 without a breakwater while Fig.
10 shows those with a breakwater. The length of
breakwater is a /4 and extended from both ends
of the harbor entrance. The amplification factors
are computed at two locations i.e.,, A and B as
shown in the figures. Comparisons show that the
values of R is larger in the case with a break-
water than those without it, This seemingly con-
tradictory phenomena is called a harbor paradox
and discussed by Miles & Munk [11] and Mei
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Fig. 9[R] at point 4 & B
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Fig. 10 [R] at point A & B(with breakwater)

10.00
9.00
8.00
7.00
6.00
5.00 A
4.00
3.00

2.00 B
1.00 4+

“;:r;:!
__l_l

l

00
.00 1.00 2.00 3.00 4.00 500 6.00 7.00 8.00
KL

Fig. 11 [R] at point 4 & B with two breakwaters



12

10.00
9.00
8.00
7.00
6.00
5.00
4,00
3.00
2.00
1.00

.00

10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00

Fig. 12 [ R] for stepped bottom
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Fig. 13 [ R] along the Y-axis

(for the case of Fig. 3 without breakwater)
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1st mode
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Fig. 14 [R] along the Y-axis with a breakwater

(for the case of Fig. 10)

[12]). This paradox can be explained by the fact
that when the harbor entrance becomes smaller,
then the incident wave energy entered into the
harbor can not easily get out and is rather
trapped.

Fig. 11 shows the
factors when a second breakwater is introduced
in the mid section of the Harbor. It is of interest
to note that the values of R becomes even more

results of amplification

pronounced with two breakwaters. -

Fig. 12 show the results for three stepped
bottom topography. It should be noted that the
water depth increases after the entrance, the am-
plification factor is more pronounced. This can be
interpreted as a similar phenomena of harbor
paradox.

— L. FEM
Integral.eq

6.00 § .
5.00
4.00

R 3.00
2.00

1.00 3

Fig. 15 [ R] at point A, model 2

— L FEM
6.00 * Integral.eq

5.00
4.00

R 3.00 1 )
2.00

Loo ]

.00 T

Fig. 16 { R] at point B, model 2



Fig. 13 and 14 show the amplification
factors for the two lowest resonant modes versus
the y-coordinate along the center lines for the
cases treated in Fig, 9 and 10.

4.3 Convergence in Numerical Computations

Throughout the present computations, the
number of element is taken at least ten per a
wave length in order to guarantee a good resolu-
tion. In the computations by LFEM by dis-
tributing few point singularities between three
and seven the results were very close to those of
Mei {12] as shown in Fig. 6. However, when we
increased the number of distributed source points
without ihcreasing the number of finite element
along the matching boundary ], and computed
results became less accurate. Specifically, this
happened in the present calculations when the
number of source points were taken more than
80% of the number of segments along the
matching boundary. This loss of the accuracy by
increasing the number of source points beyond
the optimum number is presumably due to the
fact that the information to be provided by rela-
tively too few linear elements on ] and by using
numerical quadrature for the coupling integral
terms is not sufficient to determine the too many
unknowns for the source strengths,

Table 1 shows comparisons of computation
times between LFEM and integral equation
method. It should be noted that the computation
(CPU) time required in the conventional method
of integral equation takes approximately 4~15
times longer than that required in LFEM in the
present computations,

Table 1 Comparison of computation time
(MV8000 AHRA|)

¢ o, of ¢ lcpu

method | "¢ matching no. 0 o
segments sources | time

boundary

Model 1| LFEM 80 e 5 6 sec
LEM 48 5 - | 38sec
Model 2| LFEM 216 22 ] 5 23 sec
LEM 69 5 |~ 75 sec

5. Concluding Remarks

The computational method by LFEM is devel-
oped for IBM PC XT & AT. It is shown that
agreement is good between the results obtained
by LFEM and those by other methods. Further-
more LFEM has computational effeciency over
the method of integral equation as shown in the
present results, The present method (LFEM) can
be easily extended to treat general three-
dimensional harbor geometry in a straightforward
manner,
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