• Title/Summary/Keyword: free gas

Search Result 1,033, Processing Time 0.031 seconds

Analysis of the composition of trail pheromone secreted from live Camponotus japonicus by HS-SPME GC/MS (HeadSpace-Solid Phase MicroExtraction Gas Chromatography/Mass Spectrometry) (HS-SPME GC/MS법을 이용한 일본왕개미의 trail pheromone 성분 분석)

  • Park, Kyung-Eun;Lee, Dong-Kyu;Kwon, Sung Won;Lee, Mi-Young
    • Analytical Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.292-299
    • /
    • 2012
  • GC/MS has been utilized for many applications due to great resolution and reproducibility, which made it possible to build up the database of mass spectrum, while HS-SPME has the advantage of solventfree extraction of volatile compounds. The combination of these two methods, HS-SPME GC/MS, enabled many scientific applications with various possibilities. In this study, the analysis of trail pheromone excreted from live Camponotus japonicus with the feature of solvent-free extraction was carried out and the optimization for this analysis was performed. The major compounds detected were n-decane, n-undecane, and n-tridecane. Optimization for the best detection of these hydrocarbons was processed in the point of SPME parameter (selection of fiber, extraction temperature, extraction time, etc.). The advantage of the analysis of live sample is to analyze phenomenon right after it is excreted by ants. But the experimental process has restriction of extraction temperature and time because of the analysis of live ants. Establishing the process of HS-SPME GC/MS applied to live samples shown in this study can be a breakthrough for the ecofriendly and ethical research of live things.

Hybrid MBE Growth of Crack-Free GaN Layers on Si (110) Substrates

  • Park, Cheol-Hyeon;O, Jae-Eung;No, Yeong-Gyun;Lee, Sang-Tae;Kim, Mun-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.183-184
    • /
    • 2013
  • Two main MBE growth techniques have been used: plasma-assisted MBE (PA-MBE), which utilizes a rf plasma to supply active nitrogen, and ammonia MBE, in which nitrogen is supplied by pyrolysis of NH3 on the sample surface during growth. PA-MBE is typically performed under metal-rich growth conditions, which results in the formation of gallium droplets on the sample surface and a narrow range of conditions for optimal growth. In contrast, high-quality GaN films can be grown by ammonia MBE under an excess nitrogen flux, which in principle should result in improved device uniformity due to the elimination of droplets and wider range of stable growth conditions. A drawback of ammonia MBE, on the other hand, is a serious memory effect of NH3 condensed on the cryo-panels and the vicinity of heaters, which ruins the control of critical growth stages, i.e. the native oxide desorption and the surface reconstruction, and the accurate control of V/III ratio, especially in the initial stage of seed layer growth. In this paper, we demonstrate that the reliable and reproducible growth of GaN on Si (110) substrates is successfully achieved by combining two MBE growth technologies using rf plasma and ammonia and setting a proper growth protocol. Samples were grown in a MBE system equipped with both a nitrogen rf plasma source (SVT) and an ammonia source. The ammonia gas purity was >99.9999% and further purified by using a getter filter. The custom-made injector designed to focus the ammonia flux onto the substrate was used for the gas delivery, while aluminum and gallium were provided via conventional effusion cells. The growth sequence to minimize the residual ammonia and subsequent memory effects is the following: (1) Native oxides are desorbed at $750^{\circ}C$ (Fig. (a) for [$1^-10$] and [001] azimuth) (2) 40 nm thick AlN is first grown using nitrogen rf plasma source at $900^{\circ}C$ nder the optimized condition to maintain the layer by layer growth of AlN buffer layer and slightly Al-rich condition. (Fig. (b)) (3) After switching to ammonia source, GaN growth is initiated with different V/III ratio and temperature conditions. A streaky RHEED pattern with an appearance of a weak ($2{\times}2$) reconstruction characteristic of Ga-polarity is observed all along the growth of subsequent GaN layer under optimized conditions. (Fig. (c)) The structural properties as well as dislocation densities as a function of growth conditions have been investigated using symmetrical and asymmetrical x-ray rocking curves. The electrical characteristics as a function of buffer and GaN layer growth conditions as well as the growth sequence will be also discussed. Figure: (a) RHEED pattern after oxide desorption (b) after 40 nm thick AlN growth using nitrogen rf plasma source and (c) after 600 nm thick GaN growth using ammonia source for (upper) [110] and (lower) [001] azimuth.

  • PDF

Separation of Hydrogen-Nitrogen Gases by PTMSP/PDMS-Borosilicate Composite Membranes (PTMSP/PDMS-Borosilicate 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Lee, Suk Ho;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • The PTMSP/PDMS graft copolymer were synthesized from the PTMSP[poly(1-trimethylsilyl-1-propyne)] and the PDMS[poly(dimethylsiloxane)] and then the PTMSP/PDMS-borosilicate composite membranes were prepared by adding the porous borosilicates to the PTMSP/PDMS graft copolymer. The number-average molecular weight (${\bar{M}}_n$) and the weight-average molecular weight (${\bar{M}}_w$) of PTMSP/PDMS graft copolymer were 460,000 and 570,000 respectively, and glass transition temperature ($T_g$) of PTMSP/PDMS graft copolymer appeared at $33.53^{\circ}C$ according to DSC analysis. According to the TGA measurements, the addition of borosilicate to the PTMSP/PDMS graft copolymer leaded the decreased weight loss and the completed weight loss temperature went down. SEM observation showed that borosilicate was dispersed in the PTMSP/PDMS-borosilicate composite membranes with the size of $1{\sim}5{\mu}m$. Gas permeation experiment indicated that the addition of borosilicate to PTMSP/PDMS graft copolymer resulted in the increase in free volume, cavity and porosity resulting in the gradual shift of the mechanism of the gas permeation from solution diffusion to molecular sieving surface diffusion, and Knudsen diffusion. Consequently, the permeability of $H_2$ and $N_2$ increased and selectivity ($H_2/N_2$) decreased as the contents of borosilicate increased.

Nutritional and Biochemical Studies on the Pollen toads -1. Studies on Lipid Compositions of Sunflower Pollen toad and Effects of Its Pollen toad on Liver Cholesterol Metabolism in Mouse- (화분립(花粉粒)의 영양생화학적(營養生化學的) 연구(硏究) -1. 해바라기 화분립(花粉粒)의 지질조성(脂質組成)과 Mouse 간장(肝臟) 콜레스테롤 대사(代謝)에 미치는 영향(影響)-)

  • Chung, Yung-Gun;Yoon, Soo-Hong;Kwon, Jung-Sook;Bae, Man-Jong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.2
    • /
    • pp.169-174
    • /
    • 1984
  • For the purpose of investigating whether the administration of sunflower pollen load has any influence upon liver cholesterol metabolism in mouse, lipids were isolated from sunflower pollen load, identified and quantitated by thin-layer and gas liquid chromatographies. We also studied changes in liver cholesterol level in mouse according to the amount and the period of pollen load administration. Lipids of sunflower pollen load were constituted 84.10f of neutral lipid, 10.50% of glycolipid and 5.40% of phospholipid. The main fatty acid contents of neutral lipid, glycolipid and phospholipid were ranged 28.48 to 33.70% of linoleic acid, 12.90 to 47.50% of palmitic acid ana 11.20 to 12.20% of oleic acid, however, phospholipid contained more palmitic acid than the other lipids. The body weight of the Pollen fed mouse significantly increased during experimental Period in comparison with control group. From the fact tat the ratio of liver weight to body weight of pollen fed mouse was smaller than that of control group, it was proved that liver lipid metabolism of pollen fed mouse was more active than that of control group. During early experimental period, liver cholesterol level had been increased according to pollen load administration(P.O), and then the level decreased rapidly to the similar level to that of control group at the end of the period.

  • PDF

Olefin Metathesis Curing Reaction of Essential Oils in Korean Dendropanax Lacquer (Olefin Metathesis를 이용한 황칠 Essential Oil의 경화 반응에 관한 연구)

  • Kim, Mi Ri;Lee, Won Hwi;Yoo, Hye Jin;Kim, Jong Sang;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.16 no.4
    • /
    • pp.146-151
    • /
    • 2015
  • Raw sap of essential oil in Korean Dendropanax lacquer was extracted with ethanol, and which was cured by using ROMP (ring opening metathesis polymerization, one of olefin metathesis). Curing behavior with subsequent film properties were studied and compared with conventional curing (under ambient conditions) and UV photo curing. The compositional changes of major ingredients in the lacquer before and after curing were studied by using GC-MS (gas chromatography mass spectrometry). ROMP-cured coating film showed higher gel contents (40%) as compared to those of conventional (8%) and UV curing (25%). ROMP curing with 2 wt% Grubbs' catalyst at $100^{\circ}C$ completed curing reaction within 2 h, which was much faster than that of conventional curing. The quality of coating film prepared with ROMP was more homogeneous and wrinkle-free as compared with that with UV curing. It was found that major ingredients of sesquiterpenes, such as ${\alpha}$-selinene, ${\beta}$-selinene, and ${\delta}$-cadinene were reacted in ROMP, as well as polyacetylenes.

Transport Properties of PEBAX Blended Membranes with PEG and Glutaraldehyde for SO2 and Other Gases (SO2와 다른 기체에 대한 PEG와 Glutaraldehyde가 혼합된 PEBAX 막의 투과 특성)

  • Cho, Eun Hye;Kim, Kwang Bae;Rhim, Ji Won
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.687-693
    • /
    • 2014
  • Poly(ether-block-amide) 1657 (PEBAX 1657) blended membranes with molecular weight 400 poly(ethylene glycol) (PEG 400) were prepared and their permeability was tested for the gases $N_2$, $O_2$, $CH_4$, $CO_2$, and $SO_2$ by the time-lag method. The permeation characteristics were investigated in terms of diffusivity and solubility, which are dominant factors for gas transport. With the addition of PEG 400, the permeability of all the gases increased and also the ideal selectivity for several pair gases was enhanced. In particular, selectivity for $CO_2/N_2$ ranged from 53.2 (pristine PEBAX 1657 membrane) to 84.1 (50% PEG 400 added), for $SO_2/CO_2$ from 38.9 to 50.7, and for $CO_2/CH_4$ from 17.7 to 31.4. The increase of both permeability and selectivity is mainly because of the increase of solubility of the gases, especially $CO_2$ and $SO_2$. To obtain durability against water vapor, glutaraldehyde (GA) was added to the PEBAX 1657/PEG 400 blended membranes. As a result, permeability decreased owing to a reduction of the free volume and ether oxide units, which are the main factors in elevating the permeability for the blended membranes, and selectivity decrease however; we believe that the durability of the resulting membranes would be increased.

The Application of Octa-Substituted Metallophthalocyanine Langmuir-Blodgett films for $NO_2$ Measurement (수정진동자를 이용한 프탈로시아닌 LB박막의 $NO_2$ 감지 특성)

  • Kwon, H.J.;Lee, Y.J.;Chang, Y.K.;Kim, J.D.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.254-262
    • /
    • 1998
  • Multilayer Langmuir-Blodgett (LB) films coated on quartz crystal microbalance (QCM) of octa-substituted metallophhtalocyanines ($MPc(OEH)_8$, M = Cu, Co, and Sn) and dihydrogen phthalocyanines ($H_2Pc(OEH)_8$) were used to quantify $NO_2$ concentrations. They were exposed to various concentrations of $NO_2$ in dry $N_2$. Among the four phthalocyanines we tested, the metal-free $H_2Pc(OEH)_8$ was observed to be most sensitive to $NO_2$. However, its LB film showed a partially irreversible behavior, that is part of the frequency change due to $NO_2$ adsorption could not be recovered even after purging with pure $N_2$ gas for an extended period. Examining the spectra of NMR and FTIR revealed fact that the irreversible portion of frequency change was due to ether groups in the linkage between side chains and the Pc unit. In order to remove the effect of such initial deactivation, on $NO_2$ quantification experiment, a freshly fabricated LB film was treated at a high concentration of $NO_2$ so that the ether sites were saturated. A pretreated LB film showed a reproducible performance for repeated uses. The $CuPc(OEH)_8$ LB film showed a satisfactory sensing performance down to as low as 4 ppm. For the $H_2Pc(OEH)_8$ LB film, the lower detection limit was found to be 35ppb of $NO_2$. In order to make the experimental condition more realistic, the carrier gas, dry nitrogen, was replaced by air. It was observed that the presence of oxygen, a weak electron acceptor, reduced the sensitivity and thus increased the sensing limit to hundreds of ppb. Results of experiments with moisture added showed that the interference of moisture was quite severe.

  • PDF

Characterization of SiC nanowire synthesize by Thermal CVD

  • Jeong, Min-Uk;Kim, Min-Guk;Song, U-Seok;Jeong, Dae-Seong;Choe, Won-Cheol;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

Studies on the Chemical Composition of Major Fruits in Korea -On Non-volatile Organic Acid and Sugar Contents of Apricot (maesil), Peach, Grape, Apple and Pear and its Seasonal Variation- (한국산(韓國産) 주요과실류(主要果實類)의 화학성분(化學成分)에 관(關)한 연구(硏究) -매실, 복숭아, 포도, 사과 및 배의 주요품종별(主要品種別) 계절적(季節的) 비휘발성(非揮發性) 유기산(有機酸) 및 당(糖)의 함량변화(含量變化)-)

  • Lee, D.S.;Woo, S.K.;Yang, C.B.
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.134-139
    • /
    • 1972
  • The contents and their seasonal changes of non-volatile organic acids and sugars of various fruits in Korea, apricot(maesil), peach, grape, apple and pears were measured. The organic acid contents were determined by gas chromatography and the free sugars were detected by thin layer chromatography. The results were as follows: 1) The common non-volatile organic acids found in those fruits were oxalic, fumaric, succinic, maleic, tartaric and citric acids: though their contents varied from almost none to 3430mg/100g. 2) Malic acid was contained in all above fruits with generally the highest contents ranging $18{\sim}3430mg/100g$ among different fruits. In every fruits oxalic was the least contained among other organic acids, almost none to trace except apricot(maesil) which contained 10.8mg/100g. 3) It seemed that generally all the non-volatile acids contents decreased after ripening except maleic acid and the cases of an apple and a pear varieties where they increased. 4) Glucose and fructose were detected in all fruits both matured and unripened by thin layer chromatography. Maltose was found in apricot(maesil), peach, grape and apple. Sucrose was detected in apricot(maesil), peach, grape, apple and pear.

  • PDF

Fermentation of Chinese Cabbage Kimchi Soaked with L. acidophilus and Cleaned Materials by Ozone (오존처리 청정재료와 L. acidophilus를 이용한 배추김치의 숙성)

  • 김미정;오영애;김미향;김미경;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.165-174
    • /
    • 1993
  • This work was conducted to study the use of L. acidophilus, which exists in humun intestine for the fermentation of Chinese cabbage kimchi. The changes in vitamins, the number of microflora and sensory quality were observed during fermentation after the microflora which was not related to kimchi fermentation was eliminated by treatment with ozone water or ozone gas. The growth rate of L. acidophilus in the cabbage juice was higher than that in MRS broth. The growth of L. acidophilus was slightly promoted by adding 1~2% hot pepper powder while that was inhibited by ginger and garlic. Therefore, it was shown that the regulation of fermentation was possible by addition of spices. The result of treating spice with ozone gas and ozone water 6mg/L/sec for 1 hour was that the survival ratio of total microflora was 6~20%. When L. acidophilus was added to materials after ozone treatment, the fermentation rate was improved and the polysaccharides in the cell wall were used when the usable free sugar was all consumed. The contents of vitamin B$_1$ and C in the ozone treated kimchi was higher than in the control.

  • PDF