DOI QR코드

DOI QR Code

Transport Properties of PEBAX Blended Membranes with PEG and Glutaraldehyde for SO2 and Other Gases

SO2와 다른 기체에 대한 PEG와 Glutaraldehyde가 혼합된 PEBAX 막의 투과 특성

  • Cho, Eun Hye (Department of Chemical Engineering, Hannam University) ;
  • Kim, Kwang Bae (Department of Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Chemical Engineering, Hannam University)
  • Received : 2014.01.28
  • Accepted : 2014.05.13
  • Published : 2014.11.25

Abstract

Poly(ether-block-amide) 1657 (PEBAX 1657) blended membranes with molecular weight 400 poly(ethylene glycol) (PEG 400) were prepared and their permeability was tested for the gases $N_2$, $O_2$, $CH_4$, $CO_2$, and $SO_2$ by the time-lag method. The permeation characteristics were investigated in terms of diffusivity and solubility, which are dominant factors for gas transport. With the addition of PEG 400, the permeability of all the gases increased and also the ideal selectivity for several pair gases was enhanced. In particular, selectivity for $CO_2/N_2$ ranged from 53.2 (pristine PEBAX 1657 membrane) to 84.1 (50% PEG 400 added), for $SO_2/CO_2$ from 38.9 to 50.7, and for $CO_2/CH_4$ from 17.7 to 31.4. The increase of both permeability and selectivity is mainly because of the increase of solubility of the gases, especially $CO_2$ and $SO_2$. To obtain durability against water vapor, glutaraldehyde (GA) was added to the PEBAX 1657/PEG 400 blended membranes. As a result, permeability decreased owing to a reduction of the free volume and ether oxide units, which are the main factors in elevating the permeability for the blended membranes, and selectivity decrease however; we believe that the durability of the resulting membranes would be increased.

분자량이 400 g/mol인 poly(ethylene glycol)(PEG 400)을 poly(ether-block-amide) 1657(PEBAX 1657)와 혼합을 통하여 막을 제조하였고, time-lag 법에 의해 $N_2$, $O_2$, $CH_4$, $CO_2$, 그리고 $SO_2$ 기체에 대한 투과도를 테스트하였다. 투과특성은 막 내에서 기체분자이동에 어느 것이 지배적인가를 알기 위하여 확산과 용해 항으로 조사하였다. PEG 400의 함량이 증가함에 따라 모든 기체에 대한 투과도 및 이상선택도가 모두 증가하였다. 특히 $CO_2/N_2$의 경우 53.2(PEG 400이 첨가되지 않은 PEBAX 1657)으로부터 84.1(PEG 400이 50% 첨가된 막)이었으며, $SO_2/CO_2$는 38.9 에서 50.7, 그리고 $CO_2/CH_4$의 경우는 177.7에서 31.4의 결과를 보여주었다. 투과도와 선택도의 증가는 기체들의 용해도로 인한 것이며, 특히 $CO_2$$SO_2$에 대해서는 더욱 증가한다는 것을 알 수 있었다. 수증기에 대한 내구성을 얻기 위하여, glutaraldehyde(GA)가 PEBAX 1657/PEG 400 혼합막에 첨가되었다. 결과적으로 투과도는 혼합막에 있어서 투과도 증가와 선택도 감소의 주된 요인으로 작용하는 자유부피와 ether oxide 기의 감소로 인하여 줄어들었으나 이는 막의 내구성을 향상시키는데 도움이 되었을 것으로 사료된다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. R. J. Heinsohn and R. L. Kabel, Sources and Control of Air Pollution, Prentice Hall, Englewood Cliffs, NJ, 1999.
  2. C. A. Scholes, S. E. Kentish, and G. W. Stevens, Sep. Purif. Rev., 38, 1 (2009). https://doi.org/10.1080/15422110802411442
  3. Y.-Y. Jiang, Z. Zhou, Z. Jiao, L. Li, Y.-T Wu, and Z.-B. Zhang, J. Phys. Chem. B, 111, 5058 (2007). https://doi.org/10.1021/jp071742i
  4. M. Okamota and A. Chakma, $SO_2$ Separation by Reactive Liquid Membranes, Elserier, Amsterdam, 1994.
  5. M. Teramoto, Q. Huang, T. Maki, and H. Matsuyama, Sep. Purif. Technol., 16, 109 (1999). https://doi.org/10.1016/S1383-5866(98)00116-6
  6. H. Lin and B. D. Freeman, J. Memb. Sci., 239, 105 (2004). https://doi.org/10.1016/j.memsci.2003.08.031
  7. M. Kawakami, H. Iwanaga, Y. Hara, M. Iwamoto, and S. Kagawa, J. Appl. Polym. Sci., 27, 2387 (1982). https://doi.org/10.1002/app.1982.070270708
  8. J. Li, K. Nagai, T. Nakagawa, and S. Wang, J. Appl. Polym. Sci., 58, 1445 (1995).
  9. A. Sengupta, B. Raghuraman, and K. K. Sirkar, J. Memb. Sci., 51, 105 (1990). https://doi.org/10.1016/S0376-7388(00)80896-0
  10. D. L. Kuehne and S. K. Friedlander, Ind. Eng. Chem. Process Des. Dev., 19, 609 (1990).
  11. D. L. Kuehne and S. K. Friedlander, Ind. Eng. Chem. Process Des. Dev., 19, 616 (1990).
  12. V. I. Bondar, B. D. Freeman, and I. Pinnau, J. Polym. Sci., Part B: Polym. Phys., 38, 2051 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  13. J. H. Kim, S. Y. Ha, and Y. M. Lee, J. Memb. Sci., 190, 179 (2001). https://doi.org/10.1016/S0376-7388(01)00444-6
  14. A. Car, C. Stropnik, W. Yave, and K. V. Pinemann, J. Memb. Sci., 307, 88 (2008). https://doi.org/10.1016/j.memsci.2007.09.023
  15. X. Ren, J. Ren, and M. Deng, Sep. Purif. Technol., 89, 1 (2012). https://doi.org/10.1016/j.seppur.2012.01.004
  16. K. Kim, P. G. Ingole, J. Kim, and H. Lee, Chem. Eng. J., 233, 242 (2013). https://doi.org/10.1016/j.cej.2013.08.030
  17. S. A. Stern, V. M. Shah, and B. J. Hardy, J. Polym. Sci., Part B: Polym. Phys., 25, 1263 (1987). https://doi.org/10.1002/polb.1987.090250607
  18. Q. M. Jia, M. Zheng, Y. C. Zhu, J. B. Li, and C. Z. Xu, Eur. Polym. J., 43, 35 (2007). https://doi.org/10.1016/j.eurpolymj.2006.10.016