• 제목/요약/키워드: fractional step 방법

Search Result 28, Processing Time 0.029 seconds

Analysis of Thermal flow Field Uing Equal Order Linear Finite Element and Fractional Step Method (동차선형 유한요소와 Fractional Step방법을 이용한 열유동장의 해석)

  • ;;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2667-2677
    • /
    • 1995
  • A new numerical algorithm using equal order linear finite element and fractional step method has been developed which is capable of analyzing unsteady fluid flow and heat transfer problems. Streamline Upwind Petrov-Galerkin (SUPG) method is used for the weighted residual formulation of the Navier-Stokes equations. It is shown that fractional step method, in which pressure term is splitted from the momentum equation, reduces computer memory and computing time. In addition, since pressure equation is derived without any approximation procedure unlike in the previously developed SIMPLE algorithm based FEM codes, the present numerical algorithm gives more accurate results than them. The present algorithm has been applied preferentially to the well known bench mark problems associated with steady flow and heat transfer, and proves to be more efficient and accurate.

Turbulent Flow Analysis of a Circular Cylinder Using a Fractional Step Method with Compact Pade Discretization (Fractional Step 방법과 Compact Pade 차분화를 이용한 원형 실린더 주위의 난류 유동해석)

  • Chung S. H;Park K. S;Park W. G
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.50-55
    • /
    • 2003
  • Recent numerical simulation has a tendency to require the higher-order accuracy in time, as well as in space. This tendency is more true in LES and acoustic noise simulation. In the present work, the accuracy of a Fractional step method, which is widely used in LES simulation, has been increased to the fourth-order accurate compact Pade discretization. To validate the present code, the flow-field past a cylinder was simulated and compared with experiment. A good agreement with experiment was achieved.

Turbulent Flow Analysis of a Circular Cylinder Using a Fractional Step Method (Fractional Step Method을 이용한 원형 실린더 주위의 난류 유동해석)

  • Park K. S.;Park W. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.152-157
    • /
    • 2003
  • As computer capacity has been progressed continuously, the studies of the flow characteristics have been performing by the numerical methods actively. Recent numerical simulation has a tendency to require the higher-order accuracy in time, as well as in space. This tendency is more true in LES and acoustic noise simulation. In this study, 3-dimensional unsteady Incompressible Navier-Stokes equation was solved by numerical method using the fractional step method with the fourth order compact pade scheme to achieve high accuracy To validate the present code and algorithm, 3D flow-field around a cylinder was simulated. The drag coefficient and lift coefficient were computed and, then, compared with experiment. The present code will be tailored to LES simulation for more accurate turbulent flow analysis.

  • PDF

FRACTIONAL STEP METHOD COMBINED WITH VOLUME-OF-FLUID METHOD FOR EFFICIENT SIMULATION OF UNSTEADY MULTIPHASE FLOW (비정상 다상유동의 효율적 수치모사를 위한 VOF가 적용된 Fractional Step 기법)

  • Lee, Kyong-Jun;Yang, Kyung-Soo;Kang, Chang-Woo
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.99-108
    • /
    • 2010
  • Fractional Step Methods(FSM) are popular in simulation of unsteady incompressible flow. In this study, we demonstrate that FSM, combined with a Volume-Of-Fluid method, can be further applied to simulation of multiphase flow. The interface between the fluids is constructed by the effective least squares volume-of-fluid interface reconstruction algorithm and advected by the velocity using the operator split advection algorithm. To verify our numerical methodology, our results are compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. The present FSM sheds light on accurate simulation of turbulent multiphase flow which is found in many engineering applications.

Development of Canonical Fractional-Step Methods and Consistent Boundary Conditions for Computation of Incompressible Flows (비압축성유동의 수치계산을 위한 표준분할단계방법 및 일관된 경계조건의 개발)

  • Lee, Moon-J.;Oh, Byung-Do;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.404-409
    • /
    • 2001
  • An account of second-order fractional-step methods and boundary conditions for the incompressible Navier-Stokes equations is presented. The present work has aimed at (i) identification and analysis of all possible splitting methods of second-order splitting accuracy; and (ii) determination of consistent boundary conditions that yield second-order accurate solutions. It has been found that only three types (D, P and M) of splitting methods called the canonical methods are non-degenerate so that all other second-order splitting schemes are either degenerate or equivalent to them. Investigation of the properties of the canonical methods indicates that a method of type D is recommended for computations in which the zero divergence is preferred, while a method of type P is better suited to the cases when highly-accurate pressure is more desirable. The consistent boundary conditions on the tentative velocity and pressure have been determined by a procedure that consists of approximation of the split equations and the boundary limit of the result. The pressure boundary condition is independent of the type of fractional-step methods. The consistent boundary conditions on the tentative velocity were determined in terms of the natural boundary condition and derivatives of quantities available at the current timestep (to be evaluated by extrapolation). Second-order fractional-step methods that admit the zero pressure-gradient boundary condition have been derived. The boundary condition on the new tentative velocity becomes greatly simplified due to improved accuracy built in the transformation.

  • PDF

A Comparative Analysis and Improvement of the Fractional Distillation Experiments in the Middle School Science Textbooks (중학교 과학 교과서 분별 증류 실험의 비교 분석 및 개선)

  • Ryu, Oh Hyun;Choi, Moon Young;Song, Ju Hyun;Kwon, Jung Geun;Paik, Seoung Hey;Park, Kuk Tae
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.481-490
    • /
    • 2001
  • The purpose of this study was to find out the problems on the fractional distillation experiments in the middle school science textbooks based on the 6th curriculum and to suggest an efficient experiment method for the middle school students. The first step was the classification of the experiments in 8 science textbooks according to heating apparatus and liquid mixtures. The second step was doing each experiment 3 times followed by the experimental process in the textbooks. The third step was developing the alternative experiments for solving the problems found in the second step. The heating method used in the alternative experiments were direct heating, oil bath, and heating mantle. The results of the second step showed that the direct heating experiment of branched round flask was more close to the theoretical prediction than the experiment of water bath heating of branched test tube. Also the direct heating experiment of thermally insulated branched round flask was better than the result of the experiment which was not insulated. The results of the third step showed that the experiment using heating mantle regulated heating power by observing the temperature of distillate gave the closest result to the theoretical prediction. From the above results, it is concluded that the experiment using branched test-tube with water bath heating is not adequate for the fractional distillation and an alternative experiment using insulated branched round flask with heating mantle regulated heating power during experiment is recommended.

  • PDF

A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(I)-New Free Surface Tracking Algorithm and Its Verification- (자유 표면이 존재하는 유체 유동 해석을 위한 VOF방법의 기반의 새로운 수치 기법(I)-새로운 자유 표면 추적 알고리즘 및 검증-)

  • Kim, Min-Su;Sin, Su-Ho;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1555-1569
    • /
    • 2000
  • Numerical simulation of fluid flow with moving free surface has been carried out. For the free surface flow, a VOF(Volume of Fluid)-based algorithm utilizing a fixed grid system has been investigated. In order to reduce numerical smearing at the free surface represented on a fixed grid system, a new free surface tracking algorithm based on the donor-acceptor scheme has been presented. Novel features of the proposed algorithm are characterized as two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid systems that are usual in finite element method (FEM). Moreover, the proposed algorithm can be extended and applied to the 3-D free surface flow problem without additional efforts. For computation of unsteady incompressible flow, a finite element approximation based on the explicit fractional step method has been adopted. In addition, the SUPG(streamline upwind/Petrov-Galerkin) method has been implemented to deal with convection dominated flows. Combination of the proposed free surface tracking scheme and explicit fractional step formulation resulted in an efficient solution algorithm. Validity of the present solution algorithm was demonstrated from its application to the broken dam and the solitary wave propagation problems.

Turbulent Flow Analysis around Circular Cylinder and Airfoil by Large Eddy Simulation with Smagorinsky Model (Smagorinsky model을 이용한 실린더 및 익형 주위의 LES 난류유동해석)

  • 박금성;구본국;박원규;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • As a computer has been continuously progressed to reduce R&D time and cost, the study of the flow physics has been significantly relied on the numerical method. Recently, Large Eddy Simulation(LES) has been widely used in CFD community to accurately capture the turbulent flows. The LES code requires high accuracy in time, as well as in space. Also, it should have strong robustness to ensure the convergence in various complicated flows. The objective of the present work is to develop a base code for LES simulation, having 2$^{nd}$ order accuracy in time and 4$^{th}$ order accuracy in space. To achieve the present objective, the four-step fractional step method was enhanced by adopting compact Pade'scheme. The standard Smagorinsky model was implemented for the first stage of the present code development. The flows over a cylinder and an airfoil were successfully simulated. and an airfoil were successfully simulated.

Analysis of Salinity Dispersion in Estuaries by an X-Y Numerical Model (X-Y 수치모형에 의한 하구의 염도확산 분석)

  • 강주환;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.197-208
    • /
    • 1991
  • A depth-averaged X-Y numerical model with transformed coordinates is developed to analyze the salinity dispersion in estuaries. Simulation of intertidal zones, residual current and closed boundary condition are examined. Especially. the improvements in stability and accuracy of the numerical algorithm are made by adopting fractional step method for the dispersion term of the governing equation. The model being applied to the Keum River Esturary, velocity fields and salinity fields are reproduced satisfactorily and the estimation of the dispersion coefficient with respect to the flow fold is also studied.

  • PDF

An unstructured finite volume method for unsteady incompressible flows with full second order accuracy (2차 정확도를 가지는 비정상 비압축성 유동장 해석을 위한 비정렬 유한 체적법의 개발)

  • Lee K. S.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.71-76
    • /
    • 2004
  • An extension of our recently developed locally linear reconstruction scheme to 2 dimensional incompressible flow solver is presented. The solver is based on a semi-implicit fractional step method in which the convective term is discretized by Adams-Bashforth method and the diffusion term by Crank-Nicolson method. Several numerical examples are tested to demonstrate the mesh type independent accuracy of the solver, which include decaying vortex flow, square cavity flow, and flow around a circular cylinder. The above examples are solved on quadrilateral or hybrid meshes. For all numerical examples, we obtained reasonable results.

  • PDF