• Title/Summary/Keyword: fractional multiplication and division

Search Result 10, Processing Time 0.018 seconds

A Study of Diagnosis and Prescription of Errors of Fractional Multiplication and Division (분수의 곱셈과 나눗셈 오류 유형 진단 및 지도방안 연구)

  • An, So Hyun;Choi, Chang Woo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.3
    • /
    • pp.457-477
    • /
    • 2016
  • The purpose of this study is to analyze and diagnose the type of errors indicated by the students in the process of calculation of the fractional multiplication and division, and to propose teaching methods, to effectively correct errors. The results obtained through this study are as follows. First, based on the results of the preliminary examination, 6 types of errors of the fractional multiplication and division has been organized. In particular, the most frequent types of errors are algorithm errors. Therefore, a teacher should explain the meaning and concept of fractional multiplication and division. Second, 4 prescription methods are proposed for understanding fractional multiplication and division. Third, according to the results of this study, it was effective to diagnose underachievers' error types and give corrective lesson according to the cause of the error types. Throughout the study, it's concluded that it is necessary to analyze and diagnose the error types of fractional multiplication and division, and then a teacher can correct error types by 4 proposed prescription methods. Also, 5 students showed interest while learning, and participated actively.

An Analysis of the Relationship between Students' Understanding and their Word Problem Solving Strategies of Multiplication and Division of Fractions (분수의 곱셈과 나눗셈에 대한 학생의 이해와 문장제 해결의 관련성 분석)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.50 no.3
    • /
    • pp.337-354
    • /
    • 2011
  • The purpose of the study was to investigate how students understand multiplication and division of fractions and how their understanding influences the solutions of fractional word problems. Thirteen students from 5th to 6th grades were involved in the study. Students' understanding of operations with fractions was categorized into "a part of the parts", "multiplicative comparison", "equal groups", "area of a rectangular", and "computational procedures of fractional multiplication (e.g., multiply the numerators and denominators separately)" for multiplications, and "sharing", "measuring", "multiplicative inverse", and "computational procedures of fractional division (e.g., multiply by the reciprocal)" for divisions. Most students understood multiplications as a situation of multiplicative comparison, and divisions as a situation of measuring. In addition, some students understood operations of fractions as computational procedures without associating these operations with the particular situations (e.g., equal groups, sharing). Most students tended to solve the word problems based on their semantic structure of these operations. Students with the same understanding of multiplication and division of fractions showed some commonalities during solving word problems. Particularly, some students who understood operations on fractions as computational procedures without assigning meanings could not solve word problems with fractions successfully compared to other students.

A Study on Understanding of Fraction Division of Elementary Mathematical Gifted Students (초등수학영재의 분수 나눗셈의 이해에 관한 연구)

  • Kim, Young A;Kim, Dong Hwa;Noh, Ji Hwa
    • East Asian mathematical journal
    • /
    • v.32 no.4
    • /
    • pp.565-587
    • /
    • 2016
  • The purpose of this study was to analyze the understanding of the meaning of fraction division and fraction division algorithm of elementary mathematical gifted students through the process of problem posing and solving activities. For this goal, students were asked to pose more than two real-world problems with respect to the fraction division of ${\frac{3}{4}}{\div}{\frac{2}{3}}$, and to explain the validity of the operation ${\frac{3}{4}}{\div}{\frac{2}{3}}={\frac{3}{4}}{\times}{\frac{3}{2}}$ in the process of solving the posed problems. As the results, although the gifted students posed more word problems in the 'inverse of multiplication' and 'inverse of a cartesian product' situations compared to the general students and pre-service elementary teachers in the previous researches, most of them also preferred to understanding the meaning of fractional division in the 'measurement division' situation. Handling the fractional division by converting it into the division of natural numbers through reduction to a common denominator in the 'measurement division', they showed the poor understanding of the meaning of multiplication by the reciprocal of divisor in the fraction division algorithm. So we suggest following: First, instruction on fraction division based on various problem situations is necessary. Second, eliciting fractional division algorithm in partitive division situation is strongly recommended for helping students understand the meaning of the reciprocal of divisor. Third, it is necessary to incorporate real-world problem posing tasks into elementary mathematics classroom for fostering mathematical creativity as well as problem solving ability.

An analysis of fractional division instruction emphasizing algebraic thinking (대수적 사고를 강조한 분수 나눗셈 수업의 분석)

  • Cho, SeonMi;Pang, JeongSuk
    • The Mathematical Education
    • /
    • v.60 no.4
    • /
    • pp.409-429
    • /
    • 2021
  • This study investigated instructional methods for fractional division emphasizing algebraic thinking with sixth graders. Specifically, instructional elements for fractional division emphasizing algebraic thinking were derived from literature reviews, and the fractional division instruction was reorganized on the basis of key elements. The instructional elements were as follows: (a) exploring the relationship between a dividend and a divisor; (b) generalizing and representing solution methods; and (c) justifying solution methods. The instruction was analyzed in terms of how the key elements were implemented in the classroom. This paper focused on the fractional division instruction with problem contexts to calculate the quantity of a dividend corresponding to the divisor 1. The students in the study could explore the relationship between the two quantities that make the divisor 1 with different problem contexts: partitive division, determination of a unit rate, and inverse of multiplication. They also could generalize, represent, and justify the solution methods of dividing the dividend by the numerator of the divisor and multiplying it by the denominator. However, some students who did not explore the relationship between the two quantities and used only the algorithm of fraction division had difficulties in generalizing, representing, and justifying the solution methods. This study would provide detailed and substantive understandings in implementing the fractional division instruction emphasizing algebraic thinking and help promote the follow-up studies related to the instruction of fractional operations emphasizing algebraic thinking.

A Study on Understanding of the Elementary Teachers in Pre-service with respect to Fractional Division (우리나라 예비 초등 교사들의 분수 나눗셈의 의미 이해에 대한 연구)

  • 박교식;송상헌;임재훈
    • School Mathematics
    • /
    • v.6 no.3
    • /
    • pp.235-249
    • /
    • 2004
  • The purpose of this study was to analyze the error patterns and sentence types in word problems with respect to 1$\frac{3}{4}$$\div$$\frac{1}{2}$ which were made by the pre-service elementary teachers, and to suggest the clues to the education in pre-service. Korean elementary teachers in pre-service misunderstood 'divide with $\frac{1}{2}$' to 'divide to 2' by the Korean linguistic structure. And they showed a new error type of 1$\frac{3}{4}$$\times$2 by the result of calculation. Although they are familiar to 'inclusive algorithm' they are not good at dealing with the fractional divisor. And they are very poor at the 'decision the unit proportion' and the 'inverse of multiplication'. So, it is necessary to teach the meaning of the fractional division as 'decision the unit proportion' and 'inverse of multiplication' and to give several examples with respect to the actual situation and context.

  • PDF

An Analysis on the Error According to Academic Achievement Level in the Fractional Computation Error of Elementary Sixth Graders (초등학교 6학년 학생이 분수 계산문제에서 보이는 오류의 학업성취수준별 분석)

  • Park, Miyeon;Park, Younghee
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.1
    • /
    • pp.23-47
    • /
    • 2017
  • The purpose of this study is to analyze the types of errors that may occur in the four arithmetic operations of the fractions after classified according to the level of academic achievement for sixth-grade elementary school student who Learning of the four arithmetic operations of the fountain has been completed. The study was proceed to get the information how change teaching content and method in accordance with the level of academic achievement by looking at the types of errors that can occur in the four arithmetic operations of the fractions. The test paper for checking the type of errors caused by calculation of fractional was developed and gave it to students to test. And we saw the result by error rate and correct rate of fraction that is displayed in accordance with the level of academic achievement. We investigated the characteristics of the type of error in the calculation of the arithmetic operations of fractional that is displayed in accordance with the level of academic achievement. First, in the addition of the fractions, all levels of students showing the highest error rate in the calculation error. Specially, error rate in the calculation of different denominator was higher than the error rate in the calculation of same denominator Second, in the subtraction of the fractions, the high level of students have the highest rate in the calculation error and middle and low level of students have the highest rate in the conceptual error. Third, in the multiplication of the fractions, the high and middle level of students have the highest rate in the calculation error and low level of students have the highest rate in the a reciprocal error. Fourth, in the division of the fractions, all levels of students have the highest r rate in the calculation error.

  • PDF

The Type of Fractional Quotient and Consequential Development of Children's Quotient Subconcept of Rational Numbers (분수 몫의 형태에 따른 아동들의 분수꼴 몫 개념의 발달)

  • Kim, Ah-Young
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.1
    • /
    • pp.53-68
    • /
    • 2012
  • This paper investigated the conceptual schemes four children constructed as they related division number sentences to various types of fraction: Proper fractions, improper fractions, and mixed numbers in both contextual and abstract symbolic forms. Methods followed those of the constructivist teaching experiment. Four fifth-grade students from an inner city school in the southwest United States were interviewed eight times: Pre-test clinical interview, six teaching / semi-structured interviews, and a final post-test clinical interview. Results showed that for equal sharing situations, children conceptualized division in two ways: For mixed numbers, division generated a whole number portion of quotient and a fractional portion of quotient. This provided the conceptual basis to see improper fractions as quotients. For proper fractions, they tended to see the quotient as an instance of the multiplicative structure: $a{\times}b=c$ ; $a{\div}c=\frac{1}{b}$ ; $b{\div}c=\frac{1}{a}$. Results suggest that first, facility in recall of multiplication and division fact families and understanding the multiplicative structure must be emphasized before learning fraction division. Second, to facilitate understanding of the multiplicative structure children must be fluent in representing division in the form of number sentences for equal sharing word problems. If not, their reliance on long division hampers their use of syntax and their understanding of divisor and dividend and their relation to the concepts of numerator and denominator.

  • PDF

An Analysis on the Contents of Fractional Operations in CCSSM-CA and its Textbooks (CCSSM-CA와 미국 교과서에 제시된 분수의 연산 내용 분석)

  • Lee, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.22 no.2
    • /
    • pp.129-147
    • /
    • 2019
  • Because of the various concepts and meanings of fractions and the difficulty of learning, studies to improve the teaching methods of fraction have been carried out. Particularly, because there are various methods of teaching depending on the type of fractions or the models or methods used for problem solving in fraction operations, many researches have been implemented. In this study, I analyzed the fractional operations of CCSSM-CA and its U.S. textbooks. It was CCSSM-CA revised and presented in California and the textbooks of Houghton Mifflin Harcourt Publishing Co., which reflect the content and direction of CCSSM-CA. As a result of the analysis, although the grades presented in CCSSM-CA and Korean textbooks were consistent in the addition and subtraction of fractions, there are the features of expressing fractions by the sum of fractions with the same denominator or unit fraction and the evaluation of the appropriateness of the answer. In the multiplication and division of fractions, there is a difference in the presentation according to the grades. There are the features of the comparison the results of products based on the number of factor, presenting the division including the unit fractions at first, and suggesting the solving of division problems using various ways.

Multiplicative Thinking in Elementary Mathematics Education - Focusing on the development of teaching-learning materials for 5th graders - (초등에서의 곱셈적 사고 지도 - 초등 5학년을 위한 교수-학습 자료 개발을 중심으로 -)

  • Han, Eun-Hye;Ryu, Heui-Su
    • School Mathematics
    • /
    • v.10 no.2
    • /
    • pp.155-179
    • /
    • 2008
  • Multiplication problems for the 7th curriculum focus on functional realms featuring the memorization and application of the multiplication table, exposing learners only to additive thinking characterized by simple counting and drawing. A diversity of research has yet to be conducted for the transition to multiplicative thinking that highlights the capability to solve problems by using multiplication and division in the expanded number scope like 'prime numbers', 'fractional numbers', and 'ratio/rates' and to describe accurately how they solved. This research was designed to develop and utilize teaching-learning materials for the transition of fifth graders' additive thinking to advanced multiplicative one and to analyze the application results in order to identify validity in material development. The following conclusions were made. First, the development and application of teaching-learning materials for multiplicative thinking cultivation facilitated the transition from additive thinking featuring simple counting and drawing to multiplicative thinking characterized by multiplication and accurate description in a more complicated and expanded number scope. Second, the development of materials featuring 'basic'-'intermediate'-'in-depth' courses by activity enabled learners to benefit from learning by level and expansion in number scope. Third, the use of topics and materials closely connected to daily lives stimulated learners' curiosity, helping them concentrate more on given problems. Fourth, communication between teachers and students or among learners themselves was promoted by continuously encouraging them to explain and by reviewing their documents identifying rules or patterns.

  • PDF

A Variable Latency Newton-Raphson's Floating Point Number Reciprocal Computation (가변 시간 뉴톤-랍손 부동소수점 역수 계산기)

  • Kim Sung-Gi;Cho Gyeong-Yeon
    • The KIPS Transactions:PartA
    • /
    • v.12A no.2 s.92
    • /
    • pp.95-102
    • /
    • 2005
  • The Newton-Raphson iterative algorithm for finding a floating point reciprocal which is widely used for a floating point division, calculates the reciprocal by performing a fixed number of multiplications. In this paper, a variable latency Newton-Raphson's reciprocal algorithm is proposed that performs multiplications a variable number of times until the error becomes smaller than a given value. To find the reciprocal of a floating point number F, the algorithm repeats the following operations: '$'X_{i+1}=X=X_i*(2-e_r-F*X_i),\;i\in\{0,\;1,\;2,...n-1\}'$ with the initial value $'X_0=\frac{1}{F}{\pm}e_0'$. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than $'e_r=2^{-p}'$. The value of p is 27 for the single precision floating point, and 57 for the double precision floating point. Let $'X_i=\frac{1}{F}+e_i{'}$, these is $'X_{i+1}=\frac{1}{F}-e_{i+1},\;where\;{'}e_{i+1}, is less than the smallest number which is representable by floating point number. So, $X_{i+1}$ is approximate to $'\frac{1}{F}{'}$. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables $(X_0=\frac{1}{F}{\pm}e_0)$ with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a reciprocal unit. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia scientific computing, etc.