DOI QR코드

DOI QR Code

A Variable Latency Newton-Raphson's Floating Point Number Reciprocal Computation

가변 시간 뉴톤-랍손 부동소수점 역수 계산기

  • 김성기 (부경대학교 대학원 컴퓨터공학과) ;
  • 조경연 (부경대학교 전자컴퓨터정보통신공학부)
  • Published : 2005.04.01

Abstract

The Newton-Raphson iterative algorithm for finding a floating point reciprocal which is widely used for a floating point division, calculates the reciprocal by performing a fixed number of multiplications. In this paper, a variable latency Newton-Raphson's reciprocal algorithm is proposed that performs multiplications a variable number of times until the error becomes smaller than a given value. To find the reciprocal of a floating point number F, the algorithm repeats the following operations: '$'X_{i+1}=X=X_i*(2-e_r-F*X_i),\;i\in\{0,\;1,\;2,...n-1\}'$ with the initial value $'X_0=\frac{1}{F}{\pm}e_0'$. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than $'e_r=2^{-p}'$. The value of p is 27 for the single precision floating point, and 57 for the double precision floating point. Let $'X_i=\frac{1}{F}+e_i{'}$, these is $'X_{i+1}=\frac{1}{F}-e_{i+1},\;where\;{'}e_{i+1}, is less than the smallest number which is representable by floating point number. So, $X_{i+1}$ is approximate to $'\frac{1}{F}{'}$. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables $(X_0=\frac{1}{F}{\pm}e_0)$ with varying sizes. The superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a reciprocal unit. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia scientific computing, etc.

부동소수점 나눗셈에서 많이 사용하는 뉴톤-랍손 부동소수점 역수 알고리즘은 일정한 횟수의 곱셈을 반복하여 역수를 계산한다. 본 논문에서는 오차가 정해진 값보다 작아질 때까지 곱셈을 반복해서 역수를 계산하는 가변 시간 뉴톤-랍손 부동소수점 역수 알고리즘을 제안한다. 'F'의 역수 계산은 초기값 $'X_0=\frac{1}{F}{\pm}e_0'$에 대하여, $'X_{i+1}=X=X_i*(2-e_r-F*X_i),\;i\in\{0,\;1,\;2,...n-1\}'$을 반복한다. 중간 곱셈 견과는 소수점 이하 p비트 미만을 절삭하며, 절삭 오차는 $'e_r=2^{-p}'$보다 작다. p는 단정도실수에서 27, 배정도실수에서 57이다. $'X_i=\frac{1}{F}+e_i{'}$라 하면 $'X_{i+1}=\frac{1}{F}-e_{i+1},\;e_{i+1}이 된다. $'\mid(2-e_r-F*X_i)-1\mid<2^{\frac{-p+2}{2}}{'}이면, $'e_{i+1}<4e_r{'}$이 부동산소수점으로 표현 가능한 최소값보다 작이지며, $'X_{i+1}\fallingdotseq\frac{1}{F}'$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 역수 테이블$(X_0=\frac{1}{F}{\pm}e_0)$에서 단정도실수 및 배정도실수의 역수 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 역수 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

Keywords

References

  1. S. F. Oberman and M. J. Flynn, 'Design Issues in Division and Other Floating Point Operations,' IEEE Transactions on Computer, Vol. C-46, pp. 154-161, 1997 https://doi.org/10.1109/12.565590
  2. C. V. Freiman, 'Statistical Analysis of Certain Binary Division Algorithm,' IRE Proc., Vol. 49, pp. 91-103, 1961 https://doi.org/10.1109/JRPROC.1961.287780
  3. S. F. McQuillan, J. V. McCanny, and R. Hamill, 'New Algorithms and VLSI Architectures for SRT Division and Square Root,' Proc. 11th IEEE Symp. Computer Arithmetic, IEEE, pp. 80-86, 1993 https://doi.org/10.1109/ARITH.1993.378106
  4. D. L. Harris, S. F. Oberman, and M. A. Horowitz, 'SRT Division Architectures and Implementations,' Proc. 13th IEEE Symp. Computer Arithmetic, Jul. 1997 https://doi.org/10.1109/ARITH.1997.614875
  5. M. Flynn, 'On Division by Functional Iteration,' IEEE Transactions on Computers, Vol. C-19, no. 8, pp. 702-706, Aug. 1970 https://doi.org/10.1109/T-C.1970.223019
  6. R. Goldschmidt, Application of division by convergence, master's thesis, MIT, Jun. 1964
  7. M. D. Ercegovac, et al, 'Improving Goldschmidt Division, Square Root, and Square Root Reciprocal,' IEEE Transactions on Computer, Vol. 49, No. 7, pp.759-763, Jul. 2000 https://doi.org/10.1109/12.863046
  8. D. L. Fowler and J. E. Smith, 'An Accurate, High Speed Implementation of Division by Reciprocal Approximation,' Proc. 9th IEEE symp. Computer Arithmetic, IEEE, pp, 60-67, Sep. 1989 https://doi.org/10.1109/ARITH.1989.72810
  9. S. Oberman, 'Floating Point Division and Square Root Algorithms and Implementation in the AMD-K7 Microprocessors,' Proc. 14th IEEE Symp, Computer Arithmetic, pp. 106-115, Apr. 1999 https://doi.org/10.1109/ARITH.1999.762835
  10. IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard, Std. 754-1985