Acknowledgement
Supported by : 고려대학교
References
- 김경미․황우형 (2009). 분수의 덧셈, 뺄셈에 대한 아동의 이해 분석, 한국수학교육학회지 시리즈 E <수학교육논문집> 23(3), pp. 707-734.
- 박교식․송상헌․임재훈 (2004). 우리나라 예비 초등 교사들의 분수 나눗셈의 의미 이해에 관한 연구. 대한수학교육학회지 <학교수학> 6(3), pp. 235-249.
- 방정숙․Yeping Li (2008). 예비 초등 교사들의 분수 나눗셈에 대한 지식 분석. 한국수학교육학회지 시리즈A <수학교육> 47(3), pp. 291-310.
- 백선수․김원경 (2005). 분수의 곱셈에서 비형식적 지식의 형식화 사례 연구. 대한수학교육학회지 <학교수학> 7(2), pp. 139-168.
- 오영열 (2004). 초등수학에 대한 예비교사들의 이해: 분수의 곱셈을 중심으로. 대한수학교육학회지 <학교수학> 6(3), pp. 267-281.
- 임재훈 (2007). 카테시안 곱의 역 맥락에서 분수의 나눗셈. 대한수학교육학회지 <학교수학> 9(1), pp. 13-28.
- 황우형․김경미 (2008). 자연수의 사칙연산에 대한 아동의 이해 분석. 한국수학교육학회지 시리즈 A <수학교육> 47(4), pp. 519-543.
- Barmby, P., Harries, T., & Higgins, S. (2009). The array representation and primary children's understanding and reasoning in multiplication. Educational Studies in Mathematics, 70, 217-241. https://doi.org/10.1007/s10649-008-9145-1
- Behr, M. J., Harel, G., Post, T., & Lesh, R. (1992). Rational number, ratio, and proportion. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning(pp. 296-333). Reston, Virginia : NCTM.
- Behr, M., Lesh, R., Post, T., & Silver, E. (1983). Rational number concepts. In R. Lesh, & M. Landau (Eds.), Acquisition of mathematics concepts and processes(pp. 91-125), NY: Academic Press.
- Bell, A., Fischbein, E., & Greer, B. (1984). Choice of operation in verbal arithmetic problems: The effects of number size, problem structure and context. Educational Studies in Mathematics 15, 129-147. https://doi.org/10.1007/BF00305893
- Carpenter, T. P., Moser, J. M., & Bebout, H. C. (1988). Representation of addition and subtraction word problems. Journal for Research in Mathematics Education 19, 345-357 https://doi.org/10.2307/749545
- Christou, C., & Philippou, G. (1998). The developmental nature of ability to solve one-step word problems. Journal for Research in Mathematics Education 29(4), 436-442. https://doi.org/10.2307/749860
- De Corte, E., Verschaffel, L., & Van Coillie, V. (1988). Influence of number size, problem structure, and response mode on children's solutions of multiplication word problems. Journal of Mathematical Behaviour 7, 197-216.
- English, L. D., & Halford, G. S. (1995). Mathematics education models and processes. NY: Lawrence Erlbaum Associates.
- Fischbein, E., Deri, M., Nello, M. S., & Merino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education 16, 3-17. https://doi.org/10.2307/748969
- Fuchs, L. S., Fuchs, D., Finelli, R., Courey, S. J., & Hamlett, C. L. (2004). Expanding schema-based transfer instruction to help third graders solve real-life mathematical problems. American Educational Research Journal 41, 419-445. https://doi.org/10.3102/00028312041002419
- Fuchs, L. S., Fuchs, D., Prentice, K., Burch, M., Hamlett, C. L., Owen, R., et al. (2003). Explicitly teaching for transfer: Effects on third-grade students' mathematical problem solving. Journal of Educational Psychology 95, 293-305. https://doi.org/10.1037/0022-0663.95.2.293
- Fuson, K. (1992). Research on whole number addition and subtraction. In D. Grouws(Ed.), Handbook of research on mathematics teaching and learning (pp. 243-275). New York: Macmillan.
- Greer, B. (1992). Multiplication and division as models of situations. In D. Grouws(Ed.), Handbook of research on mathematics teaching and learning (pp. 276-295). New York: Macmillan.
- Greer, B. (1994). Extending the meaning of multiplication and division. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics(pp. 61-85), Albany NY: SUNY Press.
- Jonassen, D. H. (2003). Designing research-based instruction for story problems. Educational Psychology Review 15, 267-296. https://doi.org/10.1023/A:1024648217919
- Kieren, T. E. (1976). On the mathematical, cognitive, and instructional foundations of rational numbers. In R. Lesh (Ed.), Number and measurement : Papers from a research workshop(pp. 101-144). Columbus, OH: ERIC/SMEAC.
- Kilpatrick, J., Swafford, J., & Findell, B. (Eds.) (2001). Adding it up : Helping children learn mathematics. Washington, DC: National Academy Press.
- Kouba, V. L. (1989). Children's solution strategies for equivalent set multiplication and division word problems. Journal for Research in Mathematics Education 20(2), 147-158. https://doi.org/10.2307/749279
- Ma, L. (1999). Knowing and teaching elementary school mathematics. Mahwah: Lawrence Erlbaum.
- Mack, N. K. (2001). Building on informal knowledge through instruction in a complex content domain: Partitioning, units, and understanding multiplication of fractions. Journal for Research in Mathematics Education 32(3), 267-295. https://doi.org/10.2307/749828
- Mulligan, J. T., & Mitchelmore, M. C. (1997). Young children's intuitive models of multiplication and division. Journal for Research in Mathematics Education 28(3), 309-330. https://doi.org/10.2307/749783
- Ng, S. F., & Lee, K. (2009). The Model Method: Singapore Children's Tool for Representing and Solving Algebraic Word Problems. Journal for Research in Mathematics Education 40(3), 282-313.
- Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist 40, 27-52. https://doi.org/10.1207/s15326985ep4001_3
- Olive, J., & Steffe, L. P. (2001). The construction of an iterative fractional scheme: The case of Joe. Journal of Mathematical Behavior 20, 413-437. https://doi.org/10.1016/S0732-3123(02)00086-X
- Post, T., Cramer, K., Behr, M., Lesh, R., & Harel, G. (1993). Curriculum implications of research on the learning, teaching and assessing of rational number concepts. In T. Carpenter, E. Fennema, & T. Romberg (Eds.), Rational numbers: An integration of research (pp. 327-361). Hillsdale, NJ: Lawrence Erlbaum.
- Reed, S. K. (1999). Word problems: Research and curriculum reform. Mahwah, NJ: Lawrence Erlbaum Associates.
- Schwieger, R. D. (1999). Teaching elementary school mathematics. NY: Wadsworth Publishing Company.
- Sebrechts, M. M., Enright, M., Bennet, R. E., & Martin, K. (1996). Using algebra word problems to assess quantitative ability: Attributes, strategies, and errors. Cognition and Instruction 14(3), 285-343. https://doi.org/10.1207/s1532690xci1403_2
- Siebert, D. (2002). Connecting informal thinking and algorithms: The case of division of fraction. In Litwiller, B., & Bright, G. (Eds.), Making sense of fractions, ratios, and proportions: 2002 yearbook(pp, 247-256). Reston, VA: NCTM.
- Sinicrope, R., Mick, H. W., & Kolb, J. R. (2002). Interpretations of fraction division. In B. Litwiller & G. Bright (Eds.), Making sense of fractions, ratios, and proportions(pp. 153-161). Reston, VA: NCTM.
- Sowder, L. (1988). Children's solutions of story problems. Journal of Mathematical Behavior 7, 227-238.
- Streefland, L. (1991). Fractions in realistic mathematics education: A paradigm of developmental research. Dordrecht, The Netherlands: Kluwer Academic Publications.
- Vergnaud, G. (1988). Multiplicative structures. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades(pp. 141-161). Reston, VA: Lawrence Erlbaum Associates & National Council of Teachers of Mathematics.
- Xin, Y. P. (2008). The effect of schema-based instruction in solving mathematics word problems: An emphasis on prealgebraic conceptualization of multiplicative relations. Journal for Research in Mathematics Education 39(5), 526-551.
- Xin, Y. P., Wiles, B., & Lin, Y. Y. (2008). Teaching conceptual model-based word problem story grammar to enhance mathematics problem solving. The Journal of Special Education 42(3), 163-178. https://doi.org/10.1177/0022466907312895
Cited by
- An analysis of 6th graders' cognitive structure about division of fraction - Application of Word Association Test(WAT) - vol.53, pp.3, 2014, https://doi.org/10.7468/mathedu.2014.53.3.329