• Title/Summary/Keyword: fractional integrals

Search Result 49, Processing Time 0.024 seconds

Certain Inequalities Involving Pathway Fractional Integral Operators

  • Choi, Junesang;Agarwal, Praveen
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1161-1168
    • /
    • 2016
  • Belarbi and Dahmani [3], recently, using the Riemann-Liouville fractional integral, presented some interesting integral inequalities for the Chebyshev functional in the case of two synchronous functions. Subsequently, Dahmani et al. [5] and Sulaiman [17], provided some fractional integral inequalities. Here, motivated essentially by Belarbi and Dahmani's work [3], we aim at establishing certain (presumably) new inequalities associated with pathway fractional integral operators by using synchronous functions which are involved in the Chebychev functional. Relevant connections of the results presented here with those involving Riemann-Liouville fractional integrals are also pointed out.

FRACTIONAL CALCULUS OPERATORS OF THE PRODUCT OF GENERALIZED MODIFIED BESSEL FUNCTION OF THE SECOND TYPE

  • Agarwal, Ritu;Kumar, Naveen;Parmar, Rakesh Kumar;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.557-573
    • /
    • 2021
  • In this present paper, we consider four integrals and differentials containing the Gauss' hypergeometric 2F1(x) function in the kernels, which extend the classical Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators. Formulas (images) for compositions of such generalized fractional integrals and differential constructions with the n-times product of the generalized modified Bessel function of the second type are established. The results are obtained in terms of the generalized Lauricella function or Srivastava-Daoust hypergeometric function. Equivalent assertions for the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential are also deduced.

WEAK CONVERGENCE FOR MULTIPLE STOCHASTIC INTEGRALS IN SKOROHOD SPACE

  • Kim, Yoon Tae
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.71-84
    • /
    • 2014
  • By using the multidimensional normal approximation of functionals of Gaussian fields, we prove that functionals of Gaussian fields, as functions of t, converge weakly to a standard Brownian motion. As an application, we consider the convergence of the Stratonovich-type Riemann sums, as a function of t, of fractional Brownian motion with Hurst parameter H = 1/4.

SOME FAMILIES OF INFINITE SUMS DERIVED BY MEANS OF FRACTIONAL CALCULUS

  • Romero, Susana Salinas De;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.135-146
    • /
    • 2001
  • Several families of infinite series were summed recently by means of certain operators of fractional calculus(that is, calculus of derivatives and integrals of any real or complex order). In the present sequel to this recent work, it is shown that much more general classes of infinite sums can be evaluated without using fractional calculus. Some other related results are also considered.

  • PDF

SOME INTEGRAL INEQUALITIES IN THE FRAMEWORK OF GENERALIZED K-PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS WITH GENERAL KERNEL

  • Valdes, Juan E. Napoles
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.587-596
    • /
    • 2021
  • In this article, using the concept proposed reciently by the author, of a Generalized k-Proportional Fractional Integral Operators with General Kernel, new integral inequalities are obtained for convex functions. It is shown that several known results are particular cases of the proposed inequalities and in the end new directions of work are provided.

SOME BILINEAR ESTIMATES

  • Chen, Jiecheng;Fan, Dashan
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.609-620
    • /
    • 2009
  • We establish some estimates on the hyper bilinear Hilbert transform on both Euclidean space and torus. We also use a transference method to obtain a Kenig-Stein's estimate on bilinear fractional integrals on the n-torus.

SOME FAMILIES OF INFINITE SERIES SUMMABLE VIA FRACTIONAL CALCULUS OPERATORS

  • Tu, Shih-Tong;Wang, Pin-Yu;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.111-125
    • /
    • 2002
  • Many different families of infinite series were recently observed to be summable in closed forms by means of certain operators of fractional calculus(that is, calculus of integrals and derivatives of any arbitrary real or complex order). In this sequel to some of these recent investigations, the authors present yet another instance of applications of certain fractional calculus operators. Alternative derivations without using these fractional calculus operators are shown to lead naturally a family of analogous infinite sums involving hypergeometric functions.

  • PDF

NEW FRACTIONAL INTEGRAL INEQUALITIES OF TYPE OSTROWSKI THROUGH GENERALIZED CONVEX FUNCTION

  • HUSSAIN, SABIR;QAISAR, SHAHID
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.107-114
    • /
    • 2018
  • We establish some new ostrowski type inequalities for MT-convex function including first order derivative via Niemann-Trouvaille fractional integral. It is interesting to mention that our results provide new estimates on these types of integral inequalities for MT-convex functions.