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Abstract. Belarbi and Dahmani [3], recently, using the Riemann-Liouville fractional in-

tegral, presented some interesting integral inequalities for the Chebyshev functional in the

case of two synchronous functions. Subsequently, Dahmani et al. [5] and Sulaiman [17],

provided some fractional integral inequalities. Here, motivated essentially by Belarbi and

Dahmani’s work [3], we aim at establishing certain (presumably) new inequalities associ-

ated with pathway fractional integral operators by using synchronous functions which are

involved in the Chebychev functional. Relevant connections of the results presented here

with those involving Riemann-Liouville fractional integrals are also pointed out.

1. Introduction and Preliminaries

We begin by recalling the well-known celebrated functional introduced by
Chebyshev [4] and defined by
(1.1)

T (f, g) =
1

b− a

∫ b

a

f(x) g(x) dx−

(
1

b− a

∫ b

a

f(x) dx

)(
1

b− a

∫ b

a

g(x) dx

)
,

where f(x) and g(x) are two integrable functions which are synchronous on [a, b],
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i.e.,

(1.2) (f(x)− f(y)) (g(x)− g(y)) ≥ 0,

for any x, y ∈ [a, b].
The functional (1.1) has attracted many researchers’ attention due to diverse

applications in numerical quadrature, transform theory, probability and statistical
problems. Among those applications, the functional (1.1) has also been employed
to yield a number of integral inequalities (see, e.g., [1, 3, 5, 7, 9, 14, 17, 6]; for a
very recent work, see also [2]).

Recently, Nair [13] introduced and investigated a new fractional integral oper-
ator through the idea of pathway model given by Mathai [10](and further studied
by Mathai and Haubold [11, 12]). Belarbi and Dahmani [3], recently, using the
Riemann-Liouville fractional integral, presented some interesting integral inequal-
ities for the Chebyshev functional in the case of two synchronous functions. Sub-
sequently, Dahmani et al. [5] and Sulaiman [17], provided some fractional integral
inequalities. Here, motivated essentially by Belarbi and Dahmani’s work [3], we
aim at establishing certain (presumably) new inequalities associated with pathway
fractional integral operators by using synchronous functions which are involved in
the Chebychev functional. Relevant connections of the results presented here with
those involving Riemann-Liouville fractional integrals are also indicated.

For our purpose, we need the following definitions and some properties.

Definition 1.1. A real-valued function f(t) (t > 0) is said to be in the space Cn
µ

(n, µ ∈ R), if there exists a real number p > µ such that f (n)(t) = tp ϕ(t), where
ϕ(t) ∈ C(0, ∞). Here, for the case n = 1, we use a simpler notation C1

µ = Cµ.

Definition 1.2. Let f(x) ∈ L(a, b), η ∈ C, ℜ(η) > 0, a > 0 and let us take a
pathway parameter α < 1. Then the pathway fractional integration operator is
defined and represented as follows (see [13, p. 239]):

(1.3)
(
P

(η,α,a)
0+ f

)
(t) = tη

∫ [ t
a(1−α)

]

0

[
1− a (1− α) τ

t

] η
1−α

f(τ) dτ.

Let [a, b] (−∞ < a < b < ∞) be a finite interval on the real axis R. The
left-sided and right-sided Riemann-Liouville fractional integrals Iηa+ f and Iηb− f of
order η ∈ C (ℜ(η) > 0) are defined by

(1.4)
(
Iηa+ f

)
(x) :=

1

Γ(η)

∫ x

a

f(t) dt

(x− t)1−η
(x > a; ℜ(η) > 0)

and

(1.5)
(
Iηb− f

)
(x) :=

1

Γ(η)

∫ b

x

f(t) dt

(t− x)1−η
(x < b; ℜ(η) > 0),

respectively, where f ∈ Cµ (µ ≥ −1) (see, e.g., [8, p. 69]) and Γ(η) is the familiar
Gamma function ((see, e.g., [15, Section 1.1] and [16, Section 1.1]).
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Remark 1.3. The special case of the pathway fractional integration operator(
P

(η,α,a)
0+ f

)
(t) in (1.3) when α = 0, a = 1, and η → η − 1 reduces immediately to

the left-sided Riemann-Liouville fractional integrals as follows:

(1.6)
(
P

(η−1,0,1)
0+ f

)
(t) =

∫ t

0

(t− τ)η−1 f(τ) dτ = Γ(η)
(
Iη0+ f

)
(t) (ℜ(η) > 0).

Further one of the Erdélyi-Kober type fractional integrals (see [8, p. 105, Eq.
(2.6.1)]) defined by

(1.7)

(
Iηa+;σ,α f

)
(t) :=

σ t−σ(η+α)

Γ(η)

∫ t

a

τσ α+σ−1 f(τ) dτ

(tσ − τσ)
1−η

(0 5 a < t < b 5 ∞; ℜ(η) > 0; σ > 0; α ∈ C)

appears to be closely related to the pathway fractional integration operator (1.3).
It is found that one integral cannot contain the other one as a purely special case.
Yet it is easy to see that some special cases of the two integrals have, for example,
the following relationship:

(1.8)
(
P

(η−1,0,1)
0+ f

)
(t) = Γ(η) tη

(
Iη0+;1,0 f

)
(t).

Setting f(t) = tβ−1 in (1.3), we obtain the following formula (see [13, Eq. (12)]):

(1.9)
P

(η,α)
0+

{
tβ−1

}
=

tη+β

[a(1− α)]β

Γ(β) Γ
(
1 + η

1−α

)
Γ
(

η
1−α + β + 1

)
(α < 1; ℜ(η) > 0; ℜ(β) > 0) .

Indeed, setting f(t) = tβ−1 in (1.3) and then changing u = a(1−α)τ
t , some

algebra gives us that

P
(η,α)
0+

{
tβ−1

}
=

tη+β

[a(1− α)]β
B

(
η

1− α
+ 1, β

)
,

whereB(α, β) is the well-known Beta function which is closely related to the Gamma
function as follows:

(1.10) B(α, β) =
Γ(α) Γ(β)

Γ(α+ β)
,

where α and β are complex numbers which are neither 0 nor negative integers (see,
e.g., [15, pp. 9-11] and [16, pp. 7-10]).

2. Main Results
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We establish Chebyshev type integral inequalities for the synchronous functions
involving the pathway fractional integral operator (1.3).

Theorem 2.1. Let f and g be two synchronous functions on [0, ∞), Then the
following inequality holds true:

(2.1) P
(η,α,a)
0+ {f(t)g(t)} ≥ a(1− α) + aη

tη+1
P

(η,α,a)
0+ {f(t)}P (η,α,a)

0+ {g(t)}

for all a > 0, α < 1, t > 0, and η > 0.

Proof. Let f and g be two synchronous functions on [0,∞). Then, for all τ , ρ ∈
(0, t) with t > 0, we have

(2.2) (f(τ)− f(ρ)) (g(τ)− g(ρ)) ≥ 0,

or, equivalently,

(2.3) f(τ)g(τ) + f(ρ)g(ρ) ≥ f(τ)g(ρ) + f(ρ)g(τ).

Now, multiplying both sides of (2.3) by tη
[
1− a(1−α)τ

t

] η
1−α

and integrating

with respect to τ from 0 to t
a(1−α) , in view of (1.3), we get

(2.4)

P
(η,α,a)
0+ {f(t)g(t)}+f(ρ)g(ρ)P

(η,α,a)
0+ {1} ≥ g(ρ)P

(η,α,a)
0+ {f(t)}+f(ρ)P

(η,α,a)
0+ {g(t)} .

Again, multiplying both sides of (2.4) by tη[1 − a(1−α)ρ
t ]

η
1−α and integrating each

side of the resulting inequality with respect to ρ from 0 to t
a(1−α) and applying

(1.3), we finally use (1.9), after some simplifications, to prove the desired inequality
(2.1).

Theorem 2.2. Let f and g be two synchronous functions on [0, ∞). Then, for all
a > 0, α < 1, t > 0, η > 0 and ζ > 0, we have
(2.5)

tζ+1

a(1− α) + aζ
P

(η,α,a)
0+ {f(t)g(t)}+ tη+1

a(1− α) + aη
P

(ζ,α,a)
0+ {f(t)g(t)}

≥ P
(η,α,a)
0+ {f(t)}P (ζ,α,a)

0+ {g(t)}+ P
(ζ,α,a)
0+ {f(t)}P (η,α,a)

0+ {g(t)} .

Proof. Multiplying both sides of (2.4) by

tζ
[
1− a (1− α) ρ

t

] ζ
1−α

(a > 0; α < 1; t > 0; ζ > 0)

and integrating the resulting inequality with respect to ρ from 0 to t
a(1−α) and

applying (1.3), we obtain
(2.6)

P
(ζ,α,a)
0+ {1}P (η,α,a)

0+ {f(t)g(t)}+ P
(ζ,α,a)
0+ {f(t)g(t)}P (η,α,a)

0+ {1}

≥ P
(ζ,α,a)
0+ {g(t)}P (η,α,a)

0+ {f(t)}+ P
(ζ,α,a)
0+ {f(t)}P (η,α,a)

0+ {g(t)} .
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Finally, applying (1.9) to (2.6) yields the desired result (2.5).

Remark 2.3. It may be noted that the inequalities (2.1) and (2.5) are reversed if
the functions are asynchronous on [0, ∞), i.e.,

(2.7) (f(x)− f(y)) (g(x)− g(y)) ≤ 0,

for any x, y ∈ [0,∞).
It is also observed that the inequality in (2.5) when ζ = η reduces immediately

to that in (2.1).

Theorem 2.4. Let n ∈ N := {1, 2, 3, . . .} and {fj}nj=1 be a sequence of positive
increasing functions on [0, ∞). Then we have

(2.8) P
(η,α,a)
0+


n∏

j=1

fj(t)

 ≥
[
a(1− α) + aη

tη+1

]n−1 n∏
j=1

P
(η,α,a)
0+ {fj(t)} ,

for all a > 0, α < 1, t > 0, and η > 0.

Proof. We proceed to prove (2.8) by mathematical induction on n. For n = 1, the
inequality (2.8) obviously holds. For n = 2, the inequality (2.8) immediately follows
from (2.1). So we assume that the inequality in (2.8) holds true for some positive
integer k ∈ N \ {1}, i.e.,

(2.9) P
(η,α,a)
0+


k∏

j=1

fj(t)

 ≥
[
a(1− α) + aη

tη+1

]k−1 k∏
j=1

P
(η,α,a)
0+ {fj(t)} ,

under the given conditions of Theorem 3. It is observed that, since {fj}kj=1 are a

sequence of increasing functions, so is
∏k

j=1 fj(t) on (0, ∞). Now, we can apply the
inequality in (2.1) to the functions

g(t) :=
k∏

j=1

fj(t) and f(t) := fk+1(t)

to get the following inequality:
(2.10)

P
(η,α,a)
0+


k+1∏
j=1

fj(t)

 ≥ a(1− α) + aη

tη+1
P

(η,α,a)
0+


k∏

j=1

fj(t)

 · P (η,α,a)
0+ {fk+1(t)} ,

under the given conditions of Theorem 3. Then, if we apply (2.9) to the right-hand
side of (2.10), we have

P
(η,α,a)
0+


k+1∏
j=1

fj(t)

 ≥
[
a(1− α) + aη

tη+1

]k k+1∏
j=1

P
(η,α,a)
0+ {fj(t)} .
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Hence, by the principle of mathematical induction, the inequality (2.8) holds true
for any n ∈ N.

Here we consider some other variations of the fractional integral inequalities.

Theorem 2.5. Let f and g be two functions defined on [0, ∞) such that f is
increasing, g is differentiable and g′ is bounded below on [0, ∞). Then we have

(2.11)
P

(η,α,a)
0+ {f(t)g(t)} ≥ a(1− α) + aη

tη+1
P

(η,α,a)
0+ {f(t)} P

(η,α,a)
0+ {g(t)}

− mt

2a(1− α) + aη
P

(η,α,a)
0+ {f(t)}+m P

(η,α,a)
0+ {tf(t)} ,

for all a > 0, t > 0, α < 0, η > 0, and m := inft∈[0,∞) g
′(t).

Proof. Consider the function h(t) := g(t)−mt. Then we observe that h is differen-
tiable and increasing on [0, ∞). We can, therefore, use Theorem 1 to get

P
(η,α,a)
0+ {f(t)(g(t)−mt)} ≥ a(1− α) + aη

tη+1
P

(η,α,a)
0+ {f(t)} P

(η,α,a)
0+ {g(t)−mt}

=
a(1− α) + aη

tη+1
P

(η,α,a)
0+ {f(t)} P

(η,α,a)
0+ {g(t)}

− a(1− α) + aη

tη+1
·m · P (η,α,a)

0+ {f(t)} P
(η,α,a)
0+ {t} .

Finally, using the special case of (1.9) when β = 2:

(2.12) P
(η,α,a)
0+ {t} =

tη+2

a2 (2− 2α+ η)(1− α+ η)

for the last term in the last resulting inequality, after a little simplification, we are
led to the inequality (2.11).

Theorem 2.6. Let f and g be two functions defined on [0, ∞) such that f is
increasing, g is differentiable and bounded above on [0, ∞). Then we have

(2.13)
P

(η,α,a)
0+ {f(t)g(t)} ≤ a(1− α) + aη

tη+1
P

(η,α,a)
0+ {f(t)} P

(η,α,a)
0+ {g(t)}

− M t

2a(1− α) + aη
P

(η,α,a)
0+ {f(t)}+M P

(η,α,a)
0+ {tf(t)} ,

for all a > 0, t > 0, α < 0, η > 0 and M := supt∈[0,∞) g
′(t).

Proof. Here consider h(t) := M t− g(t). We see that h′(t) ≥ 0 and h is increasing
on [0, ∞). Then, a similar argument as in the proof of Theorem 4 will establish the
inequality (2.13). So the detailed algebra is left to the interested reader.
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Concluding Remarks. In view of (1.6), since the pathway fractional integral
operator (1.3) reduces to a Riemann-Liouville type fractional integral operator (1.4),
we find that Theorems 1 to 5 may yield those known results due to Belarbi and
Dahmani [3]. We also note that the results derived here are of a general character
and can give numerous special inequalities, which are (potentially) useful in var-
ious applications, in particular, to an establishment of uniqueness of solutions in
fractional boundary value problems and in fractional partial differential equations.

Acknowledgements. The authors should express their deep thanks for the re-
viewer’s very helpful comments to make this paper a present improved one.
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les autres prises entre lesmêmes limites, Proc. Math. Soc. Charkov, 2(1882),
93–98.

[5] Z. Dahmani, O. Mechouar and S. Brahami, Certain inequalities related to
the Chebyshev’s functional involving a type Riemann-Liouville operator, Bull.
Math. Anal. Appl., 3(4)(2011), 38–44.

[6] S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pure Appl.
Math., 31(4)(2000), 397–415.

[7] S. L. Kalla and A. Rao, On Grüss type inequality for hypergeometric fractional
integrals, Matematiche(Catania) 66(1)(2011), 57–64.

[8] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of
Fractional Differential Equations, Elsevier, North-Holland Mathematics Stud-
ies 204, Amsterdam, London, New York, and Tokyo, 2006.

[9] V. Lakshmikantham and A. S. Vatsala, Theory of fractional differential in-
equalities and applications, Commun. Appl. Anal., 11(2007), 395–402.

[10] A. M. Mathai, A pathway to matrix-variate gamma and normal densities, Lin-
ear Algebra Appl., 396(2005), 317–328.



1168 J. Choi and P. Agarwal

[11] A. M. Mathai and H. J. Haubold, On generalized distributions and path-ways,
Phys. Lett. A, 372(2008), 2109–2113.

[12] A. M. Mathai and H. J. Haubold, Pathway model, superstatistics, Tsallis statis-
tics and a generalize measure of entropy, Phys. A, 375(2007), 110–122.

[13] S. S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal.,
12(3)(2009), 237–252.
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