• 제목/요약/키워드: fractional derivative operator

검색결과 29건 처리시간 0.023초

A STUDY OF THE RIGHT LOCAL GENERAL TRUNCATED M-FRACTIONAL DERIVATIVE

  • Chauhan, Rajendrakumar B.;Chudasama, Meera H.
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.503-520
    • /
    • 2022
  • We introduce a new type of fractional derivative, which we call as the right local general truncated M-fractional derivative for α-differentiable functions that generalizes the fractional derivative type introduced by Anastassiou. This newly defined operator generalizes the standard properties and results of the integer order calculus viz. the Rolle's theorem, the mean value theorem and its extension, inverse property, the fundamental theorem of calculus and the theorem of integration by parts. Then we represent a relation of the newly defined fractional derivative with known fractional derivative and in context with this derivative a physical problem, Kirchoff's voltage law, is generalized. Also, the importance of this newly defined operator with respect to the flexibility in the parametric values is described via the comparison of the solutions in the graphs using MATLAB software.

ON A CERTAIN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATOR

  • Nisar, Kottakkaran Sooppy;Rahman, Gauhar;Tomovski, Zivorad
    • 대한수학회논문집
    • /
    • 제34권2호
    • /
    • pp.507-522
    • /
    • 2019
  • The main aim of this present paper is to present a new extension of the fractional derivative operator by using the extension of beta function recently defined by Shadab et al. [19]. Moreover, we establish some results related to the newly defined modified fractional derivative operator such as Mellin transform and relations to extended hypergeometric and Appell's function via generating functions.

Coefficient Inequalities for Certain Subclasses of Analytic Functions Defined by Using a General Derivative Operator

  • Bulut, Serap
    • Kyungpook Mathematical Journal
    • /
    • 제51권3호
    • /
    • pp.241-250
    • /
    • 2011
  • In this paper, we define new classes of analytic functions using a general derivative operator which is a unification of the S$\breve{a}$l$\breve{a}$gean derivative operator, the Owa-Srivastava fractional calculus operator and the Al-Oboudi operator, and discuss some coefficient inequalities for functions belong to this classes.

AN APPLICATION OF FRACTIONAL DERIVATIVE OPERATOR TO A NEW CLASS OF ANALYTIC AND MULTIVALENT FUNCTIONS

  • Lee, S.K.;Joshi, S.B.
    • Korean Journal of Mathematics
    • /
    • 제6권2호
    • /
    • pp.183-194
    • /
    • 1998
  • Making use of a certain operator of fractional derivative, a new subclass $L_p({\alpha},{\beta},{\gamma},{\lambda})$) of analytic and p-valent functions is introduced in the present paper. Apart from various coefficient bounds, many interesting and useful properties of this class of functions are given, some of these properties involve, for example, linear combinations and modified Hadamard product of several functions belonging to the class introduced here.

  • PDF

Some New Subclasses of Analytic Functions defined by Srivastava-Owa-Ruscheweyh Fractional Derivative Operator

  • Noor, Khalida Inayat;Murtaza, Rashid;Sokol, Janusz
    • Kyungpook Mathematical Journal
    • /
    • 제57권1호
    • /
    • pp.109-124
    • /
    • 2017
  • In this article the Srivastava-Owa-Ruscheweyh fractional derivative operator $\mathcal{L}^{\alpha}_{a,{\lambda}}$ is applied for defining and studying some new subclasses of analytic functions in the unit disk E. Inclusion results, radius problem and other results related to Bernardi integral operator are also discussed. Some applications related to conic domains are given.

FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS WITH P-LAPLACIAN OPERATOR

  • CHOUKRI DERBAZI;ABDELKRIM SALIM;HADDA HAMMOUCHE;MOUFFAK BENCHOHRA
    • Journal of Applied and Pure Mathematics
    • /
    • 제6권1_2호
    • /
    • pp.21-36
    • /
    • 2024
  • In this paper, we study the existence of solutions for hybrid fractional differential equations with p-Laplacian operator involving fractional Caputo derivative of arbitrary order. This work can be seen as an extension of earlier research conducted on hybrid differential equations. Notably, the extension encompasses both the fractional aspect and the inclusion of the p-Laplacian operator. We build our analysis on a hybrid fixed point theorem originally established by Dhage. In addition, an example is provided to demonstrate the effectiveness of the main results.

On a q-Extension of the Leibniz Rule via Weyl Type of q-Derivative Operator

  • Purohit, Sunil Dutt
    • Kyungpook Mathematical Journal
    • /
    • 제50권4호
    • /
    • pp.473-482
    • /
    • 2010
  • In the present paper we define a q-extension of the Leibniz rule for q-derivatives via Weyl type q-derivative operator. Expansions and summation formulae for the generalized basic hypergeometric functions of one and more variables are deduced as the applications of the main result.

EXISTENCE AND APPROXIMATE SOLUTION FOR THE FRACTIONAL VOLTERRA FREDHOLM INTEGRO-DIFFERENTIAL EQUATION INVOLVING ς-HILFER FRACTIONAL DERIVATIVE

  • Awad T. Alabdala;Alan jalal abdulqader;Saleh S. Redhwan;Tariq A. Aljaaidi
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권4호
    • /
    • pp.989-1004
    • /
    • 2023
  • In this paper, we are motivated to evaluate and investigate the necessary conditions for the fractional Volterra Fredholm integro-differential equation involving the ς-Hilfer fractional derivative. The given problem is converted into an equivalent fixed point problem by introducing an operator whose fixed points coincide with the solutions to the problem at hand. The existence and uniqueness results for the given problem are derived by applying Krasnoselskii and Banach fixed point theorems respectively. Furthermore, we investigate the convergence of approximated solutions to the same problem using the modified Adomian decomposition method. An example is provided to illustrate our findings.

MULTI-ORDER FRACTIONAL OPERATOR IN A TIME-DIFFERENTIAL FORMAL WITH BALANCE FUNCTION

  • Harikrishnan, S.;Ibrahim, Rabha W.;Kanagarajan, K.
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.119-129
    • /
    • 2019
  • Balance function is one of the joint factors to determine fall in risk theory. It helps to moderate the progression and riskiness of falls for detecting balance and fall risk factors. Nevertheless, the objective measures for balance function require expensive equipment with the assessment of any expertise. We establish the existence and uniqueness of a multi-order fractional differential equations based on ${\psi}$-Hilfer operator on time scales with balance function. This class describes the dynamic of time scales derivative. Our tool is based on the Schauder fixed point theorem. Here, sufficient conditions for Ulam-stability are given.

SOME FAMILIES OF INFINITE SUMS DERIVED BY MEANS OF FRACTIONAL CALCULUS

  • Romero, Susana Salinas De;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • 제17권1호
    • /
    • pp.135-146
    • /
    • 2001
  • Several families of infinite series were summed recently by means of certain operators of fractional calculus(that is, calculus of derivatives and integrals of any real or complex order). In the present sequel to this recent work, it is shown that much more general classes of infinite sums can be evaluated without using fractional calculus. Some other related results are also considered.

  • PDF