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Abstract. In the present paper we define a q-extension of the Leibniz rule for q-derivatives

via Weyl type q-derivative operator. Expansions and summation formulae for the gener-

alized basic hypergeometric functions of one and more variables are deduced as the appli-

cations of the main result.

1. Introduction

Agarwal [1], introduced the q-extension of the Leibniz rule for the fractional
order q-derivative of a product of two basic functions in terms of a finite q-series
involving fractional q-derivatives of the functions in the following manner:

(1) Dλ
z,q {U(z)V (z)} =

∞∑
n=0

(−1)nqn(n+1)/2 (q−λ; q)n
(q; q)n

Dλ−n
z,q {U(zqn)}Dn

z,q {V (z)} ,
where U(z) and V (z) are two regular functions and the fractional q-differential
operator Dλ

z,q(.) of Reimann-Liouville type (see [1] and [2]) is given by

(2) Dλ
z,q {f(z)} =

1

Γq(−λ)

∫ z

0

(z − tq)−λ−1f(t)d(t; q),

(Re(λ) < 0; |q| < 1),

and

(3) (x− y)ν = xν
∞∏

n=0

[
1− (y/x)qn

1− (y/x)qν+n

]
.

Recently, in a series of papers [14] and [15], we have investigated certain applica-
tions of q-Leibniz rule given by (1) and deduced several interesting transformations
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and expansions involving various basic hypergeometric functions of one and more
variables including the basic analogue of Fox’s H-function due to Saxena, Modi and
Kalla [11]. Earlier Agarwal [1], Al-Salam and Verma [3], Denis [4] and Shukla [12]
have applied the formula (1) to derive certain interesting transformations involving
basic hypergeometric functions of one variable. Kim and Rim [8] investigate certain
important properties of q-integrals involving q-series, and Kim [6] and [7] studied
applications of q-derivative and introduced q-extensions of Euler and Genocchi num-
bers, and trigonometric functions.

We propose to add one more dimension to this study by introducing a q-
extension of the Leibniz rule for q-derivatives by means of the Weyl type q-derivative
operator. This approach will enable us for deriving the Weyl q-derivative of an in-
tegral power of z times a function f(z) in terms of the Weyl type q-derivative of
f(z), secondly, this happens to be an important technique for deriving numerous
transformations, expansions and summation formulae involving various basic hy-
pergeometric functions of one and more variables.

Al-Salam [2] introduced the basic analogue of the Weyl fractional derivative
operator as under:

(4) zD
µ
∞,q {f(z)} =

q−µ(1+µ)/2

Γq(−µ)

∫ ∞

z

(t− z)−µ−1f(tq
1+µ)d(t; q),

where Re(µ) < 0 and the basic integration cf. Gasper and Rahman [5], is defined
as:

(5)

∫ ∞

z

f(t)d(t; q) = z(1− q)
∞∑
k=1

q−kf(zq−k).

In view of the relation (5), the operator (4) can be expressed as:

(6) zD
µ
∞,q {f(z)} =

qµ(1−µ)/2z−µ(1− q)

Γq(−µ)

∞∑
k=0

qµk(1− qk+1)−µ−1f(zq
µ−k),

(Re(µ) < 0).

In particular, for f(z) = z−p, the equation (6) reduces to

(7) zD
µ
∞,q

{
z−p

}
=

Γq(p+ µ)

Γq(p)
q−µp+µ(1−µ)/2 z−p−µ.

In the sequel, we shall also require the following definitions:
For real or complex a and |q| < 1, the q-shifted factorial is defined as:

(8) (a; q)n =

 1 ; if n = 0

(1− a)(1− aq) · · · (1− aqn−1) ; if n ∈ N.
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In terms of the q-gamma function, (8) can be expressed as

(9) (a; q)n =
Γq(a+ n)(1− q)n

Γq(a)
, n > 0,

where the q-gamma function (cf. Gasper and Rahman [5]), is given by

(10) Γq(a) =
(q; q)∞

(qa; q)∞(1− q)a−1
,

(a ̸= 0,−1,−2, · · · ).
The abnormal type of generalized basic hypergeometric series rΦs(.) is

defined as:

(11) rΦs

[
a1, · · · , ar; q; z
b1, · · · , bs; qλ

]
=

∞∑
n=0

(a1, · · · , ar; q)n
(q, b1, · · · , bs; q)n

zn qλn(n+1)/2 ,

where λ > 0.
For λ = 0, series (11) reduces to the generalized basic hypergeometric series rΦs(.)
(cf. [13]), as under:

(12) rΦs

 a1, · · · , ar;
q, z

b1, · · · , bs;

 =

∞∑
n=0

(a1, · · · , ar; q)n
(q, b1, · · · , bs; q)n

zn ,

where for the convergence of the series (12), we have |q| < 1, for all z if r ≤ s
and |z| < 1 if r = s+ 1.

2. A q-extension of the Leibniz rule

Theorem. Let ℜ be a simply connected region containing the point z = 0 and let ρ
be the largest real number such that the domain |z| < ρ is entirely contained in ℜ.
Suppose U(z) and V (z) are two regular basic functions. Then, for any non negative
integer α

(13) zD
α
∞,q {U(z)V (z)} =

α∑
r=0

(−1)rqr(r+1)/2 (q−α; q)r
(q; q)r

zD
α−r
∞,q {U(z)} zD

r
∞,q

{
V (zqα−r)

}
.

Proof. Consider U(z) = z−p1f(z) and V (z) = z−p2g(z), where f(z) and g(z) are
both analytic functions within and on ℜ, with power series representation within
|z| < ρ of f(z) and g(z) as

f(z) =
∞∑

m=0

Am zm, g(z) =
∞∑

n=0

Bn zn.
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The left-hand side, say L of the theorem (13) leads to

L ≡ zD
α
∞,q

{
z−(p1+p2)

∞∑
m=0

∞∑
n=0

Am Bn zm+n

}
.

On interchanging the order of the q-derivative operator and summations, which is
valid if Re(p1 + p2) > −Re(α) > 0, |z| < ρ, and on using the result (7), the above
expression reduces to

(14) L =
∞∑

m=0

∞∑
n=0

Am Bn
Γq(p1 + p2 −m− n+ α)

Γq(p1 + p2 −m− n)

q−α(p1+p2−m−n)+α(1−α)/2 z−(p1+p2−m−n+α).

To evolute the right-hand side, of (13), we write

(15) R ≡
α∑

r=0

(−1)rqr(r+1)/2 (q−α; q)r
(q; q)r

zD
α−r
∞,q

{ ∞∑
m=0

Am z−(p1−m)

}

zD
r
∞,q

{ ∞∑
n=0

Bn z−(p2−n)q−(α−r)(p2−n)

}
.

On making use of the result (7) and (9), R can further be written as

(16) R =
∞∑

m=0

∞∑
n=0

Am Bn z−(p1+p2−m−n+α) q−α(p1+p2−m−n)+α(1−α)/2

α∑
r=0

(−1)r (q−α; q)r (qp1−m; q)α−r(q
p2−n; q)r

(q; q)r (1− q)α
qrα+r(p1−m)+r(1−r)/2.

In view of the q-identity (cf. Gasper and Rahman [5, I.10]), namely

(17) (a; q)n−k =
(a; q)n

(q1−n/a; q)k

(
− q

a

)k

qk(k−1)/2−nk,

relation (16) reduces to

(18) R =
∞∑

m=0

∞∑
n=0

Am Bn z−(p1+p2−m−n+α) q−α(p1+p2−m−n)+α(1−α)/2

(qp1−m; q)α
(1− q)α

2Φ1

 q−α, qp2−n;
q, q

q1−α−p1+m;

 .



On a q-Extension of the Leibniz rule 477

On making use of the q-Vondermonde summation theorem, namely

(19) 2Φ1

 q−n, a;
q, q

c;

 =
(c/a; q)n
(c; q)n

(a)n,

the right hand side R, yields to

(20) R =
∞∑

m=0

∞∑
n=0

Am Bn z−(p1+p2−m−n+α) q−α(p1−m)+α(1−α)/2

Γq(p1 −m+ α) (q1−α−p1+m−p2+n; q)α
Γq(p1 −m)(q1−α−p1+m; q)α

,

which on further simplifications reduces equivalently to the value of left hand side
(14). This verifies the theorem (13). 2

3. Applications of the q-Leibniz rule

We shall now illustrate the applications of the q-Leibniz rule introduced by
means of the equation (13) to derive a number of transformations, expansions and
summation formulae involving various basic hypergeometric functions of one and
more variables by assigning suitable values to the functions U(z), V (z), and α.

3.1. Expansion formulae

We shall establish the following expansion formulae involving the basic hypergeo-
metric function rΦs(.) as under:

(21) r+1Φs+1

[
(ar), q

λ+δ+µ; q; ρ/zqµ

(bs), q
λ+δ ; qσ

]
=

1

(qλ+δ; q)µ

µ∑
k=0

(−1)k (q−µ; q)k
(q; q)k

(qδ; q)k (qλ; q)µ−k qkλ+k(k+1)/2
r+1Φs+1

[
(ar), q

δ+k; q; ρ/zqµ

(bs), q
δ ; qσ

]
,

where the symbol (ar) denotes a sequence of r parameters a1, a2, · · · , ar.

(22) r+1Φs+1

 (ar), q
λ+δ+µ;

q, ρ/zqµ

(bs), q
λ+δ;

 =
1

(qλ+δ; q)µ

µ∑
k=0

(−1)k (q−µ; q)k
(q; q)k

(qδ; q)k (qλ; q)µ−k qkλ+k(k+1)/2
r+1Φs+1

 (ar), q
δ+k;

q, ρ/zqµ

(bs), q
δ;

 ,

provided that both the sides of the results (21) and (22) exists.
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Proof of (21). To prove the result (21), we choose U(z) = z−λ and V (z) =

z−δ
rΦs

[
(ar); q; ρ/z
(bs); qσ

]
, in the q-Leibniz rule (13), to obtain

(23) zD
µ
∞,q

{
z−(λ+δ)

rΦs

[
(ar); q; ρ/z
(bs); qσ

]}
=

µ∑
k=0

(−1)kqk(k+1)/2 (q−µ; q)k
(q; q)k

zD
µ−k
∞,q

{
z−λ

}
zD

k
∞,q

{
(zqµ−k)−δ

rΦs

[
(ar); q; ρ/zqµ−k

(bs); qσ

]}
.

In view of the definition (11), the left hand side, say L of (23) becomes

L ≡
∞∑

n=0

(a1, · · · , ar; q)n (ρ)n

(q, b1, · · · , bs; q)n
qσn(n+1)/2

zD
µ
∞,q

{
z−(λ+δ+n)

}
.

On making use of formula (7), we obtain following Weyl type q-derivative for-
mula for basic hypergeometric functions after certain simplifications

(24) L =
Γq(λ+ δ + µ)

Γq(λ+ δ)
z−λ−δ−µq−µ(λ+δ)+µ(1−µ)/2

r+1Φs+1

[
(ar), q

λ+δ+µ; q; ρ/zqµ

(bs), q
λ+δ ; qσ

]
.

Further, if we put λ = 0, replace µ by k and then z by zqµ−k in equation (23), we
obtain yet another Weyl type q-derivative formula for rΦs(.)

(25) zD
k
∞,q

{
(zqµ−k)−δ

rΦs

[
(ar); q; ρ/zqµ−k

(bs); qσ

]}
=

Γq(δ + k)

Γq(δ)
z−δ−k

q−µδ+k(1+k)/2−µk
r+1Φs+1

[
(ar), q

δ+k; q; ρ/zqµ

(bs), q
δ ; qσ

]
.

Also we have from formula (7),

(26) zD
µ−k
∞,q

{
z−λ

}
=

Γq(λ+ µ− k)

Γq(λ)
q−(µ−k)λ+(µ−k)(1−µ+k)/2 z−λ−µ+k.

On substituting the values of the various expressions involved in the equation (23),
from equations (24), (25) and (26), we arrive at the main result (21). The proof of
the result (22) follows similarly when σ = 0.
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3.2. Summation formulae

In this section, we shall establish summation formula for the basic Lauricella func-

tion Φ
(n)
D (.) as the application of the newly defined q-Leibniz rule (13). The main

summation formula, runs as:

(27) Φ
(m)
D

[
q−n, qb1 , · · · , qbm ; qc; q; q1+b2+···+bm , q1+b3+···+bm , · · · , q1+bm , q

]
=

(qc−b1−b2−···−bm ; q)n
(qc; q)n

q(b1+b2+···+bm)n.

Proof. To prove the summation formula (27), we take U(z) = zc+n−1, V (z) =
z−(b1+···+bm) and α = n in the q-Leibniz rule (13), we obtain

(28) zD
n
∞,q

{
zc+n−b1−···−bm−1

}
=

n∑
r=0

(−1)rqr(r+1)/2 (q−n; q)r
(q; q)r

zD
n−r
∞,q

{
zc+n−1

}
zD

r
∞,q

{
(zqn−r)−(b1+···+bm)

}
.

On using the Weyl type q-derivative formula (7) for various expressions involving
in the equation (28), we obtain

Γq(1 + b1 + · · ·+ bm − c) Γq(1− c− n)

Γq(1 + b1 + · · ·+ bm − c− n) Γq(1− c)
=

n∑
r=0

(−1)r (q−n; q)r
(q; q)r

qr(1−c)+r(1−r)/2 Γq(1− c− r) Γq(1 + b1 + · · ·+ bm + r)

Γq(1− c) Γq(1 + b1 + · · ·+ bm)
,

which on further simplifications, yields to an interesting summation formula involv-
ing a 2Φ1(.) series, namely

(29)
(qc−b1−b2−···−bm ; q)n

(qc; q)n
q(b1+b2+···+bm)n = 2Φ1

 q−n, qb1+···+bm ;
q, q

qc;

 .

By making use of the q-multinomial theorem cf. Gasper and Rahmann ([5], p. 21),
namely

(30) (a1a2 · · · am+1; q)n

=
∑

k1,k2,··· ,km≥0,

n≥k1+k2+···+km

(q; q)n ak1
2 ak1+k2

3 · · · ak1+k2+···+km
m+1

(q; q)k1(q; q)k2 · · · (q; q)km(q; q)n−(k1+k2+···+km)

(a1; q)k1(a2; q)k2 · · · (am; q)km(am+1; q)n−(k1+k2+···+km),
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where m = 1, 2, · · · , n = 0, 1, · · · , the equation (30) reduces to

(31)
(qc−b1−b2−···−bm ; q)n

(qc; q)n
q(b1+b2+···+bm)n =

∑
n≥k1+···+km−1

(q−n; q)n qn

(q; q)n(qc; q)n

∑
k1,··· ,km−1≥0

(q; q)n (qb2)k1 (qb3)k1+k2 · · · (qbm)k1+···+km−1

(q; q)k1 · · · (q; q)km−1(q; q)n−(k1+···+km−1)

(qb1 ; q)k1
· · · (qbm−1 ; q)km−1

(qbm ; q)n−(k1+···+km−1).

In view of the definition of basic Lauricella function Φ
(n)
D (.), namely

(32) Φ
(n)
D [a, b1, · · · , bn; c; q;x1, · · · , xn]

=
∑

m1,··· ,mn≥0

(a; q)m1+···+mn

(c; q)m1+···+mn

n∏
j=1

{
(bj ; q)mj x

mj

j

(q; q)mj

}
,

where for convergence |x1| < 1, · · · , |xn| < 1, |q| < 1, the equation (31) yields to the
summation formula (27).

If we put m = 1 in the summation formula (27), we get the following well known
summation formula for basic hypergeometric functions 2Φ1(.) as under:

(33) 2Φ1

 q−n, qb1 ;
q, q

qc;

 =
(qc−b1 ; q)n
(qc; q)n

qb1n,

which is well-known summation theorem (q-Vondermonde summation theorem) (see
[5]).
Again, on putting m = 2, equation (27) reduces to terminating summation formulae
for basic Appell function Φ(1)(.) as under:

(34) Φ(1)
[
q−n, qb1 , qb2 ; qc; q; q1+b2 , q

]
=

(qc−b1−b2 ; q)n
(qc; q)n

q(b1+b2)n,

where the basic Appell function Φ(1)(.) defined as:

(35) Φ(1) [a, b, b′; c; q;x, y] =
∑

m,n≥0

(a; q)m+n(b; q)m(b′; q)n
(c; q)m+n(q; q)m(q; q)n

xmym,

(|x| < 1, |y| < 1; |q| < 1).

Further, it is interesting to observe that if we put b1 = β − δ, b2 = α − β,
c = α + 1 − n − γ in result (34), we obtain a known summation formula due to
Kumar, Saxena and Srivastava [9], namely

(36) Φ(1)
[
q−n, qβ−δ, qα−β ; qα+1−n−γ ; q; q1+α−β , q

]
=

(qγ−δ; q)n
(qγ−α; q)n

.



On a q-Extension of the Leibniz rule 481

On putting m = 3, the formula (27) reduces to summation formula for basic
hypergeometric function of three variables, namely

(37) Φ
(3)
D

[
q−n, qb1 , qb2 , qb3 ; qc; q; q1+b2+b3 , q1+b3 , q

]
=

(qc−b1−b2−b3 ; q)n
(qc; q)n

q(b1+b2+b3)n,

where the basic hypergeometric function Φ
(3)
D (.) defined as:

(38) Φ
(3)
D [a, b, b′, b′′; c; q;x, y, z]=

∑
m,n,p≥0

(a; q)m+n+p(b; q)m(b′; q)n(b
′′; q)p

(c; q)m+n+p(q; q)m(q; q)n(q; q)p
xmymzp.

Next, in view of the limit formula

(39) lim
q→1−

Γq(a) = Γ(a) and lim
q→1−

(qa; q)n
(1− q)n

= (a)n ,

where

(40) (a)n = a(a+ 1) · · · (a+ n− 1).

one can deduce that the result (13) is the q-extension of the known Leibniz rule (via
Weyl derivative) due to Miller and Ross [10].
Similarly if we take q → 1− and using limit formula (39), the result (27) reduces to

summation formula for the ordinary Lauricella function F
(n)
D (.), namely

(41) F
(m)
D [−n, b1, · · · , bm; c; 1, 1, · · · , 1] = (c− b1 − b2 − · · · − bm)n

(c)n
.

As concluding remark, one can be observed that, the q-Leibniz rule investi-
gated in the present communication, is an elegant technique for deriving numerous
transformations, expansions and summation formulae involving various basic hy-
pergeometric functions of one and more variables. The results thus derived in this
paper are general in character and likely to find certain applications in the theory
of basic hypergeometric functions.

Acknowledgment. I would like to express my sincere gratitude to Dr. R. K.
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in preparing the present paper.

References

[1] R. P. Agarwal, Fractional q-derivatives and q-integrals and certain hypergeometric
transformations, Ganita, 27(1976), 25-32.



482 Sunil Dutt Purohit

[2] W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edin. Math.
Soc., 15(1966), 135-140.

[3] W. A. Al-Salam and A. Verma, A fractional Leibniz q-formula, Pacific J. Math.,
60(2)(1975), 1-9.

[4] R. Y. Denis, On certain special transformations of poly-basic hypergeometric func-
tions, The Math. Student, 51(1-4)(1983), 121-125.

[5] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University
Press, Cambridge, (1990).

[6] T. Kim, q-extension of the Euler formula and trigonometric functions, Russ. J. Math.
Phys., 14(3)(2007), 275-278.

[7] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl.
326(2)(2007), 1458-1465.

[8] T. Kim and S. -H. Rim, A note on the q-integral and q-series, Adv. Stud. Contemp.
Math. 2(2000), 37-45.

[9] R. Kumar, R. K. Saxena and H. M. Srivastava, Fractional q-derivatives and a class
of expansions of basic hypergeometric functions, A Quart. J. Pure Appl. Math., 66(3-
4)(1992), 295-310.

[10] K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Differential
Equations, A Wiley Interscience Publication, John Wiley and Sons Inc., New York,
(1993).

[11] R. K. Saxena, G. C. Modi and S. L. Kalla, A basic analogue of Fox’s H-function,
Rev. Tec. Ing. Univ. Zulia, 6(1983), 139-143.

[12] H. L. Shukla, Certain results involving basic hypergeometric functions and fractional
q-derivative, The Math. Student, 61(1-4)(1992), 107-112.

[13] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press,
Cambridge, London and New York, (1966).

[14] R. K. Yadav and S. D. Purohit, Fractional q-derivatives and certain basic hypergeo-
metric transformations, South East Asian J. Math. and Math. Sc., 2(2)(2004), 37-46.

[15] R. K. Yadav and S. D. Purohit, On fractional q-derivatives and transformations of
the generalized basic hypergeometric functions, J. Indian Acad. Math., 28(2)(2006),
321-326.


