• Title/Summary/Keyword: fraction division

Search Result 1,087, Processing Time 0.025 seconds

Justifying the Fraction Division Algorithm in Mathematics of the Elementary School (초등학교 수학에서 분수 나눗셈의 알고리즘 정당화하기)

  • Park, Jungkyu;Lee, Kwangho;Sung, Chang-geun
    • Education of Primary School Mathematics
    • /
    • v.22 no.2
    • /
    • pp.113-127
    • /
    • 2019
  • The purpose of this study is to justify the fraction division algorithm in elementary mathematics by applying the definition of natural number division to fraction division. First, we studied the contents which need to be taken into consideration in teaching fraction division in elementary mathematics and suggested the criteria. Based on this research, we examined whether the previous methods which are used to derive the standard algorithm are appropriate for the course of introducing the fraction division. Next, we defined division in fraction and suggested the unit-circle partition model and the square partition model which can visualize the definition. Finally, we confirmed that the standard algorithm of fraction division in both partition and measurement is naturally derived through these models.

Investigating Children's Informal Knowledge and Strategies: The Case of Fraction Division

  • Yeo, Sheunhyun
    • Research in Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.283-304
    • /
    • 2019
  • This paper investigates what informal knowledge and strategies fifth-grade students brought to a classroom and how much they had potential to solve fraction division story problems. The findings show that most of the participants were engaged to understand the meaning of fraction division prior to their formal instruction at school. In order to solve the story problems, the informal knowledge related to fractions as well as division was actively utilized in student's strategies and justification. Students also used various informal strategies from mental calculation, direct modeling, to relational thinking. Formal instructions about fraction division at schools can be facilitated for sense-making of this complex fraction division conception by unpacking informal knowledge and thinking they might bring to the classrooms.

A Study on Understanding of Fraction Division of Elementary Mathematical Gifted Students (초등수학영재의 분수 나눗셈의 이해에 관한 연구)

  • Kim, Young A;Kim, Dong Hwa;Noh, Ji Hwa
    • East Asian mathematical journal
    • /
    • v.32 no.4
    • /
    • pp.565-587
    • /
    • 2016
  • The purpose of this study was to analyze the understanding of the meaning of fraction division and fraction division algorithm of elementary mathematical gifted students through the process of problem posing and solving activities. For this goal, students were asked to pose more than two real-world problems with respect to the fraction division of ${\frac{3}{4}}{\div}{\frac{2}{3}}$, and to explain the validity of the operation ${\frac{3}{4}}{\div}{\frac{2}{3}}={\frac{3}{4}}{\times}{\frac{3}{2}}$ in the process of solving the posed problems. As the results, although the gifted students posed more word problems in the 'inverse of multiplication' and 'inverse of a cartesian product' situations compared to the general students and pre-service elementary teachers in the previous researches, most of them also preferred to understanding the meaning of fractional division in the 'measurement division' situation. Handling the fractional division by converting it into the division of natural numbers through reduction to a common denominator in the 'measurement division', they showed the poor understanding of the meaning of multiplication by the reciprocal of divisor in the fraction division algorithm. So we suggest following: First, instruction on fraction division based on various problem situations is necessary. Second, eliciting fractional division algorithm in partitive division situation is strongly recommended for helping students understand the meaning of the reciprocal of divisor. Third, it is necessary to incorporate real-world problem posing tasks into elementary mathematics classroom for fostering mathematical creativity as well as problem solving ability.

An analysis of 6th graders' cognitive structure about division of fraction - Application of Word Association Test(WAT) - (분수의 나눗셈과 관련된 초등학교 6학년 학생들의 인지구조 분석 - 단어연상검사(Word Association Test) 적용 -)

  • Lee, Hyojin;Lee, Kwangho
    • The Mathematical Education
    • /
    • v.53 no.3
    • /
    • pp.329-355
    • /
    • 2014
  • The purpose of this study is to understand the difference of cognitive structure depending on the level of the 6th graders' problem-solving abilities about the division of fraction and to propose a method for improving the 6th graders' understanding about the division of fraction through the word association test. The following is the findings from this study. 1)The lower level students' is, the lower the step that the chunk appeared in cognitive structure is. 2)The basic level students' association frequency between any two concepts was less than the excellent level students and the ordinary level students' it. 3)The basic level students' connection number between concepts was far less than the excellent level students and the ordinary level students' it. 4)The connection between natural number and unit fractions, subtraction of fraction and division of fraction, division of fraction and reduction to common denominator, and division of fraction and common multiple that expected in this study did not appear in the three groups.

A Study on a Definition regarding the Division and Partition of Fraction in Elementary Mathematics (초등수학에서 분수 나눗셈의 포함제와 등분제의 정의에 관한 교육적 고찰)

  • Kang, Heung Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.2
    • /
    • pp.319-339
    • /
    • 2014
  • Recently, the discussion about division and partition of fraction increases in Korea's national curriculum documents. There are varieties of assertions arranging from the opinion that both interpretations are unintelligible to the opinion that both interpretations are intelligible. In this paper, we investigated a possibility that division and partition interpretation of fraction become valid. As a result, it is appeared that division and partition interpretation of fraction can be defined reasonably through expansion of interpretation of natural number. Besides, division and partition interpretation of fraction can be work in activity, such as constructing equation from sentence problem, or such as proving algorithm of fraction division.

  • PDF

A Study on the Teaching of 'a Concept of Fraction as Division($b{\div}a=\frac{b}{a}$)' in Elementary Math Education - Based on a Analysis of the Korean Successive Elementary Math Textbooks (초등수학에서 '나눗셈으로서의 분수($b{\div}a=\frac{b}{a}$)' 개념 지도에 관한 연구 - 한국의 역대 초등수학 교과서에 대한 분석을 중심으로)

  • Kang, Heung Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.3
    • /
    • pp.425-439
    • /
    • 2014
  • The concept of a fraction as division is a core idea which serves as a axiom in the process of a extension of the natural number system to rational number system. Also, it has necessary position in elementary mathematics. Nevertheless, the timing and method of the introduction of this concept in Korean elementary math textbooks is not well established. In this thesis, I suggested a solution of a various topics which is related to this problem, that is, transforming improper fraction to mixed number, the usage of quotient as a term, explaining the algorithm of division of fraction, transforming fraction to decimal.

  • PDF

A Study on Learner's Cognitive Structure in Division of Fraction (분수의 나눗셈에 대한 학습자의 인지구조)

  • Lee, Youngju;Lee, Kwangho;Lee, Hyojin
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.2
    • /
    • pp.295-320
    • /
    • 2012
  • The purpose of this study is searching students' cognitive structures before and after learning division of fraction. Also the researchers investigated how their structures are connected when they solve division of fraction problems through individual interviews. The researcher suggested the instruction of division of fraction from the results.

  • PDF

The Effects of Microstructure in Austenitic 316L Stainless Steels on the Strength and Damping Capacity (오스테나이트계 316L 스테인리스강의 강도 및 감쇠능에 미치는 미세조직의 영향)

  • SON DONG-WOOK;LEE JONG-MOON;KIM HYO-JONG;NAM KI-WOO;PARK KYU-SEOP;KANG CHANG-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.1-6
    • /
    • 2006
  • The effects of microstructure on the damping capacity and tensile properties of 316L stainless steel were investigated. Increasing the degree of cold working, the volume fraction of $\varepsilon-martensite$ decreased after rising to maximum value at specific level of cold working, the volume fraction of d-martensite slowly increased and then dramatically increased from the point of decreasing $\varepsilon-martensite$ volume fraction. Increasing the degree of cold working, the behnvior of damping capacity is similar to that of the $\varepsilon-martensite$. After the damping capacity showing the maximum value at about $20\%$ of cold rolling, damping capacity was decreased with the volume fraction of $\varepsilon-martensite$. Tensile strength was proportional to the volume fraction of d-martensite, and elongation steeply decreased in the range low volume fraction of a'-martensite, then slowly decreased in range the above $10\%$ volume fraction of d-martensite. The damping capacity and elongation is strongly controlled by the volume fraction of $\varepsilon$ martensite with liner relationship. However, the effect of the volume fraction of d-martensite and austenite phase on the damping capacity was not observed. Tensile strength was governed by the volume fraction of d-martensite.

An Analysis of Operation Sense in Division of Fraction Based on Case Study (사례 연구를 통한 분수 나눈셈의 연산 감각 분석)

  • Pang, Jeong-Suk;Lee, Ji-Young
    • School Mathematics
    • /
    • v.11 no.1
    • /
    • pp.71-91
    • /
    • 2009
  • The purpose of this study was to analyze operation sense in detail with regard to division of fraction. For this purpose, two sixth grade students who were good at calculation were clinically interviewed three times. The analysis was focused on (a) how the students would understand the multiple meanings and models of division of fraction, (b) how they would recognize the meaning of algorithm related to division of fraction, and (c) how they would employ the meanings and properties of operation in order to translate them into different modes of representation as well as to develop their own strategies. This paper includes several episodes which reveal students' qualitative difference in terms of various dimensions of operation sense. The need to develop operation sense is suggested specifically for upper grades of elementary school.

  • PDF

An Analysis on Processes of Justifying the Standard Fraction Division Algorithms in Korean Elementary Mathematics Textbooks (우리나라 초등학교 수학 교과서에서의 분수 나눗셈 알고리즘 정당화 과정 분석)

  • Park, Kyo Sik
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.105-122
    • /
    • 2014
  • In this paper, fraction division algorithms in Korean elementary mathematics textbooks are analyzed as a part of the groundwork to improve teaching methods for fraction division algorithms. There are seemingly six fraction division algorithms in ${\ll}Math\;5-2{\gg}$, ${\ll}Math\;6-1{\gg}$ textbooks according to the 2006 curriculum. Four of them are standard algorithms which show the multiplication by the reciprocal of the divisors modally. Two non-standard algorithms are independent algorithms, and they have weakness in that the integration to the algorithms 8 is not easy. There is a need to reconsider the introduction of the algorithm 4 in that it is difficult to think algorithm 4 is more efficient than algorithm 3. Because (natural number)${\div}$(natural number)=(natural number)${\times}$(the reciprocal of a natural number) is dealt with in algorithm 2, it can be considered to change algorithm 7 to algorithm 2 alike. In textbooks, by converting fraction division expressions into fraction multiplication expressions through indirect methods, the principles of calculation which guarantee the algorithms are explained. Method of using the transitivity, method of using the models such as number bars or rectangles, method of using the equivalence are those. Direct conversion from fraction division expression to fraction multiplication expression by handling the expression is possible, too, but this is beyond the scope of the curriculum. In textbook, when dealing with (natural number)${\div}$(proper fraction) and converting natural numbers to improper fractions, converting natural numbers to proper fractions is used, but it has been never treated officially.

  • PDF