• Title/Summary/Keyword: fossil fuel

Search Result 889, Processing Time 0.022 seconds

Development of Air Supply System for Fuel Cell Electric Bus (연료전지 버스용 공기공급시스템 개발)

  • Kim, Woo-June;Park, Chang-Ho;Cho, Kyung-Seok;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF

Energy and exergy analysis of CI engine dual fuelled with linseed biodiesel and biogas

  • S. Lalhriatpuia;Amit Pal
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.213-222
    • /
    • 2022
  • Our overdependence on the limited supply of fossil fuel with the burden of emission as a consequence of its utilization has been a major concern. Biodiesel is emerging as a potential diesel substitution for its similar performance, with the additional benefits of emitting lesser emissions. Due to the easy availability of feedstock for Biogas production, Biogas is studied for its use in CI engines. In this study, we considered Linseed Biodiesel and Biogas to run on dual fuel mode in a CI engine. An energy and exergy analysis was conducted to study the rate of fuel energy and exergy transformation to various other processes. Exergy relocation to exhaust gases was observed to be an average of 5% more for dual fuel mode than the diesel mode, whereas exergy relocation to the diesel mode was observed to be more than the dual fuel modes. Also, exergy loss to exhaust gas is observed to be more than the exergy transferred to cooling water or shaft. The exergy efficiency observed for biodiesel-biogas mode is only lesser by 3% compared to diesel-biogas mode, suggesting Biodiesel can be a substitute fuel for diesel.

Remote Sensing of Atmospheric Trace Species using Multi Axis Differential Optical Absorption Spectroscopy (Multi Axis DOAS를 이용한 대기미량 물질 원격 측정)

  • Lee Chul-Kyu;Kim Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.141-151
    • /
    • 2006
  • UV-visible absorption measurement techniques using several horizone viewing directions in addition to the traditional zenith-sky pointing have been recently developed in ground-based remote sensing of atmospheric constituents. The spatial distribution of various trace gases close to the instrument can be derived by combing several viewing directions. Multi-axis differential optical absorption spectroscopy (MAX-DOAS) technique, one of the remote sensing techniques for air quality measurements, uses the scattered sunlight as a light source and measures it at various elevation angles (corresponding to the viewing directions) by sequential scanning with a stepper motor. A MAX-DOAS system developed by GIST/ADEMRC has been applied to measuring trace gases in urban air and plumes of the volcano and fossil fuel power plant in January, May, and October 2004, respectively. MAX-DOAS spectra were analyzed to identify and quantify $SO_2,\;NO_2,\;BrO,\;and\;O_4$ (based on Slant Column Densities, SCD) in the urban air, volcanic plume, and fossil fuel power plant utilizing theirs specific structured absorption features in the UV-visible region. Vertical scan through the multiple elevation angles was performed at different directions perpendicular to the plume dispersion to retrieve cross-sectional distribution of $SO_2\;or\;NO_2$ in the plumes of the volcano and fossil fuel power plant. Based on the estimated cross sections of the plumes the mixing ratios were estimated to 580 $SO_2$ ppbv in the volcanic Plume, and 337 $NO_2\;and\;227\;SO_2$ ppbv in the plume of the fossil fuel power plant, respectively.

Analysis of the World Energy Status and Hydrogen Energy Technology R&D of Foreign Countries (국제에너지 현황 및 수소에너지 연구개발 동향)

  • Kang, Seok-Hun;Choi, Sang-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.216-223
    • /
    • 2007
  • The present carbon-based energy system will not last long due to its environmental and economical drawbacks. Hydrogen energy attracts more attention recently and seems to have large ripple effect on economy providing its technical, environmental and economical problems are solved. This paper analyses the situation changed from fossil to non-fossil energy system and the R&D policies of advanced countries by reviewing the world energy status and the energy policy of foreign countries. Finally, the R&D strategy of hydrogen energy technology was developed through analyzing the present states of energy research policy and programs of major countries.

A Study on the Characteristics of Combustion and Performance by Changing Temperature in Diesel Fuel (디젤연료 온도변화가 기관성능 및 연소특성에 관한 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.110-116
    • /
    • 2017
  • Recently the global warming caused by greenhouse gas has emerged as a global environmental problem. For this reason the continued efforts to reduce greenhouse gas emission by international cooperation and each country are in progress. Climate changing has been recognized as the world economy development from fossil fuel use is the culprit. The international maritime organization marine environment protection committee of the global warming reduction emerged restrictions on air pollution have been strengthened. Therefore, the author has investigated the effects of fuel temperature on the characteristics of combustion and performance, using an four-cycle, six cylinders and direct injection diesel engine. The results of cylinder pressure, rate of pressure rise, rate of heat release and specific fuel consumption were increased by changing of fuel temperature.

Development of Air Supply System for FCEV Bus (연료전지 버스용 공기공급시스템 개발)

  • Park, Chang-Ho;Cho, Kyung-Seok;Kim, Woo-June;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

A Study on Idle Performance Improvements for a Gasoline Engine with the Syngas Assist (합성가스를 이용한 가솔린엔진 아이들 성능 개선에 관한 연구)

  • Song, Chun-Sub;Kim, Chang-Gi;Kang, Kern-Young;Cho, Young-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.245-251
    • /
    • 2005
  • Recently, fuel reforming technology for the fuel cell vehicle has been applied to internal combustion engines, with various purpose. Syngas which is reformed from fossil fuel has hydrogen as a major component. It has better effort in combustion characteristics such as wide flammability and hig speed flame propagation. In this study, syngas was added to a gasoline engine for the improvement of combustion stability and exhaust emission in idle state. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to extend lean operation limit and ignition retard range. with dramatical reduction of engine out emissions.

  • PDF

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

Solar Energy Development in Viet Nam: Opportunities and Challenges

  • Nguyen, Binh H.;Kim, Kyung Nam
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.3 no.2
    • /
    • pp.48-54
    • /
    • 2017
  • Nowadays Viet Nam's energy supply which is mainly produced by fossil fuels energy such as coal, gas, and oil. However, the operation of fossil fuel power plants is one of the major causes of environmental pollution and climate change as well. It has a serious impact on the survival of human beings in general. As can be seen, the manufacturing industry is strongly invested, the demand for energy is also increasing. As traditional fossil fuels are being depleted and to minimize environmental pollution, renewable energy is the solution widely used by many countries in the world. Therefore, renewable energy has a significant role in maintaining the sustainability of world economy. Renewable energy sources such as solar energy, wind energy, biomass energy, geothermal energy can supply clean and nature-sourced energy to replace fossil fuels. Encouraging development of renewables is a general trend in the world today, which is also a common goal of COP21 commitment on global GHG reduction. The objective of this study is to assess the opportunities and challenges for renewable energy development in Vietnam, particularly for solar power. This study also discusses policies to promote the development of solar energy in Vietnam. While solar power provides ecological, economic and social benefits, it is exploited very modestly in Vietnam, where there are many barriers to slow down the development of renewable energy.

  • PDF

Comparisons of Diesel and DME Fuel in Macroscopic Spray Characteristics (디젤 및 DME 연료의 거시적 분무특성 비교)

  • Park, Junkyu;Chon, Munsoo;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.205-209
    • /
    • 2012
  • This study focused on comparing macroscopic characteristics of DME and diesel fuel experimentally. DME fuel is one of the most promising alternative fuels because of its superiority in atomization characteristic and clearness in terms of exhaust gas compared with existing fossil fuels. In addition, DME fuel has high cetane number so it could be applied to compression ignition engine. However because DME fuel exists in gas phase at room temperature and atmospheric pressure, and it corrodes rubber parts of fuel line, DME fuel is hard to apply to commercial vehicles. To establish knowledge about DME fuel and furthermore, to develop commercial DME vehicles such as passenger cars, many research have been proceeded steadily. The present study, by comparing spray characteristics of DME fuel to those of diesel fuel, improved atomization characteristics in DME were revealed. Injection quantity measurement and spray visualization experiment were progressed and it was revealed that DME fuel shows small injection quantity than that of diesel fuel and axial development of spray in terms of spray tip penetration decreases when DME fuel was injected.