DOI QR코드

DOI QR Code

Remote Sensing of Atmospheric Trace Species using Multi Axis Differential Optical Absorption Spectroscopy

Multi Axis DOAS를 이용한 대기미량 물질 원격 측정

  • Lee Chul-Kyu (Advanced Environmental Monitoring Research Center (ADEMRC), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim Young-Joon (Advanced Environmental Monitoring Research Center (ADEMRC), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • 이철규 (광주과학기술원 환경공학과 환경모니터링 신기술 연구센터) ;
  • 김영준 (광주과학기술원 환경공학과 환경모니터링 신기술 연구센터)
  • Published : 2006.04.01

Abstract

UV-visible absorption measurement techniques using several horizone viewing directions in addition to the traditional zenith-sky pointing have been recently developed in ground-based remote sensing of atmospheric constituents. The spatial distribution of various trace gases close to the instrument can be derived by combing several viewing directions. Multi-axis differential optical absorption spectroscopy (MAX-DOAS) technique, one of the remote sensing techniques for air quality measurements, uses the scattered sunlight as a light source and measures it at various elevation angles (corresponding to the viewing directions) by sequential scanning with a stepper motor. A MAX-DOAS system developed by GIST/ADEMRC has been applied to measuring trace gases in urban air and plumes of the volcano and fossil fuel power plant in January, May, and October 2004, respectively. MAX-DOAS spectra were analyzed to identify and quantify $SO_2,\;NO_2,\;BrO,\;and\;O_4$ (based on Slant Column Densities, SCD) in the urban air, volcanic plume, and fossil fuel power plant utilizing theirs specific structured absorption features in the UV-visible region. Vertical scan through the multiple elevation angles was performed at different directions perpendicular to the plume dispersion to retrieve cross-sectional distribution of $SO_2\;or\;NO_2$ in the plumes of the volcano and fossil fuel power plant. Based on the estimated cross sections of the plumes the mixing ratios were estimated to 580 $SO_2$ ppbv in the volcanic Plume, and 337 $NO_2\;and\;227\;SO_2$ ppbv in the plume of the fossil fuel power plant, respectively.

태양광을 광원으로 하고 천정방향을 포함한 다양한 고도각을 이용하는 자외선/가시광선영역에서의 흡수분광학이 최근에 지상용 대기원격 측정에 개발되어오고 있다. 이를 이용하여 지표부근에 존재하는 대기 미량 물질의 공간적 분포가 유추될 수 있다. 대기질 측정기술 중 하나인 MAX-DOAS (Multi-axis Differential Optical Absorption Spectroscopy) 기술은 광원으로서 태양산란광을 이용하고, 다양한 고도각에서 태양산란광을 기록하고 분석을 통하여 대기 중 미량 물질을 측정한다. 광주과학기술원 환경모니터링 신기술 연구센터에서 개발된 MAX-DOAS 시스템은 9004년 1월, 5월, 10월에 각각 도시대기, 화산플룸, 화력발전소 플룸의 측정에 적용되었다. 각각의 경우에 $SO_2,\;NO_2,\;BrO,\;O_4$를 정량분석하기 위하여 기록된 MAX-DOAS 스펙트럼은 자외선/가시광선 영역에서의 고유 흡수스펙트럼을 이용한 DOAS 기술을 이용하여 분석 되었다. 그 결과는 Slant Column Density (SCD)로 표현되었다. 플룸 측정의 경우에서는 플룸 속에 포함된 $NO_2,\;SO_2$의 공간적 분포를 파악하기 위하여 플룸의 진행방향과 수직적인 방향에서 MAX-DOAS 스캔이 이루어졌다. 이를 통하여 얻은 단면적을 토대로 $SO_2,\;NO_2$ 농도가 계산되었다. 화산플룸에서 $SO_2$는 580ppbv, 화력발전소 플룸에서 $NO_2$는 337ppbv, $SO_2$는 227ppbv 로 계산되었다.

Keywords

References

  1. 이철규, 최여진, 이정순, 정진상, 김영준, 김기현, 2005. 차등흡수 분광법을 이용한 서울 대기 중 BTX 측정, 한국대기환경학회지, 21(1): 1-14
  2. Afe, O., A. Richter, B. Sierk, F. Wittrock, and J. Burrows, 2004. BrO emission from volcanoes: A survey using GOME and SCIAMACHY measurements, Geophysical Research Letters, 31 (L24113), doi:10.1029/GL020994
  3. Dobson, G. M. B. and D. N. Harrison, 1926. Measurements of the amount of ozone in the Earth's Atmosphere and its Relation to other Geophysical Conditions. Proceeding of the Royal Society, London, 110: 660-693
  4. Lee, C., Y. Choi, J. Jung, J. Lee, K. Kim, and Y. Kim, 2005a. Measurement of atmospheric monoaromatic hydrocarbons using Differential Optical Absorption Spectroscopy: comparison with on-line Gas Chromatography measurements in urban air, Atmospheric Environment, 39: 2225-2234 https://doi.org/10.1016/j.atmosenv.2005.01.004
  5. Lee, C., Y. Kim, H. Tanimoto, N. Bobrowski, U. Platt, T. Mori, K. Yamamoto, and C. Hong, 2005b. High ClO and ozone depletion observed in the plume of Sakurajima volcano, Japan, Geophysical Research Letters, 32 (L21809), doi:10.1029/2005GL023785
  6. Lee, C., Y. Kim, S. Hong, H. Lee, J. Jung, Y. Choi, J. Park, K. Kim, J. Lee, K. Chun, and H. Kim, 2005c. Measurement of atmospheric formaldehyde and monoaromatic hydrocarbons using differential optical absorption spectroscopy during winter and summer intensive periods in Seoul, Korea, Water, Air, and Soil Pollution, 166: 181-195 https://doi.org/10.1007/s11270-005-7308-6
  7. Platt, U., 1994. Differential optical absorption spectroscopy', in: Sigrist, M. (ed.), Air Monitoring by Spectroscopic Techniques, Wiley & Sons, New York, pp. 27-84
  8. Stutz, J. and U. Platt, 1996. Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods, Applied Optics, 35: 6041-6053 https://doi.org/10.1364/AO.35.006041
  9. Hoenninger, G. and U. Platt, 2002. Observations of BrO and its vertical distribution during surface ozone depletion at Alert, Atmopheric Environment, 36: 2481-2489 https://doi.org/10.1016/S1352-2310(02)00104-8
  10. Wagner, T, B. Dix, C. v. Friedeburg, U. Friess, S. Sanghavi, R. Sinreich, and U. Platt, 2004. MAXDOAS O4 measurements: A new technique to derive information on atmospheric aerosols-Principles and information content, Journal of Geophysical Research, 109 (D22205), doi:10.1029/2004JD004904
  11. Chance, K. and R. Spurr, 1997. Ring effect studies: Rayleigh scattering, including molecular parameter for rotational Raman scattering, and the Fraunhofer spectrum, Applied Optics, 36: 5224-5230 https://doi.org/10.1364/AO.36.005224
  12. Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares, Quarteraly of Applied Mathematics, 2: 164-168 https://doi.org/10.1090/qam/10666
  13. Marquardt, D., 1963. An algorithm for least-squares estimation of nonlinear parameters, Jouranl of Society of Industrial Applied Mathematics, 11(2): 431-441 https://doi.org/10.1137/0111030
  14. Platt, U., 1999. Modern methods of the measurement of atmospheric trace gase; Invited lecture, Physical Chemistry Chemical Physics, 1: 5409-5415 https://doi.org/10.1039/a906810d
  15. Savitzky, A. and M. Golay, 1964. Smoothing and differentiation of data by simplified least square procedures, Analytical Chemistry, 36(8): 1627-1639 https://doi.org/10.1021/ac60214a047
  16. Bobrowski, N., G. Hoenninger, B. Galle, and U. Platt, 2003. Detection of bromine monoxide in a volcanic plume, Nature, 423: 273-276 https://doi.org/10.1038/nature01625
  17. Hoenninger, G. C. von Friedeburg, and U. Platt, 2004. Multi axis differential optical absorption spectroscopy (MAX-DOAS), Atmospheric Chemistry and Physics, 4: 231-254 https://doi.org/10.5194/acp-4-231-2004
  18. Moffat, A. and M. Milla.n, 1971. The application of optical correlation techniques to the remote sensing of $SO_2$ plumes using skylight, Atmospheric Environment, 5: 677-690 https://doi.org/10.1016/0004-6981(71)90125-9
  19. Aliwel, S., M. Roozendael, P. Johnston, A. Richter, T. Wagner, D. Arlander, J. Burrow, D. Fish, R. Jones, K. Tornkvist, J. Lambert, K. Pfeilsticker, and I. Pundt, 2002. Analysis for BrO in zenith-sky spectra: An intercomparison exercise for analysis improvement, Journal of Geophysical Research, 107, doi:10.1029/2001JD000329