• Title/Summary/Keyword: flood inundation area

Search Result 253, Processing Time 0.027 seconds

Analysis of Flooded Areas for Cadastral Information-Based Rainfall Frequencies (지적정보 기반의 강우빈도별 침수지역 분석)

  • Min, Kwan-Sik;Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.101-110
    • /
    • 2010
  • The increased occurrence of flooding due to typhoons and local rainfall has necessitated damage prevention through the systematic construction of damage history and quantitative analysis of flood prediction data. In this study, we constructed a disaster information map for practical use by combining digital images and continuous cadastral maps of damaged areas using a geographic information system to provide basic data and attribute information. In addition, we predicted the areas at risk of flash floods by calculating the flood capacity of the study area for different rainfall frequencies through flood inundation simulation, which was used to obtain comprehensive disaster information. Further, we calculated the extent of the flooded area and the damage rate for different rainfall frequencies using cadastral information. Flood inundation simulation in the case of heavy rainfall was found to help improve the ability to react to a flood and enhance the efficiency of rescue work by supporting decision-making for disaster management.

Flooding Area Estimation by Using Different River Topographic Maps (하천지형 구축 방법에 따른 홍수 시 예상 침수면적 산정)

  • Moon, Changgeon;Lee, Jungsik;Shin, Shachul;Son, Hogeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.21-28
    • /
    • 2016
  • The purpose of this study is to compare the three areas that each estimated by using three different river topographic maps. For construction of river topographic maps, the data used in this study are ASTER, SRTM and a 1:5,000 scale digital map data sets in 14 streams of the Cheongdo-gun and Uiseong-gun. HEC-GeoRAS, RAS Mapper, and RiverCAD model are applied for the flooding area analysis using observed data and design rainfalls. The result of analysis is to compare observed flooding area based on the flood plain maps with estimated inundation area by hydraulic models and constructed river topographic maps. The results of this study are as follows; Flooding area by HEC-GeoRAS model is similar to the inundation area of flood plain map and appears in order of RAS Mapper, and RiverCAD model in all watersheds. Flood inundation area by SRTM DEM is similar to the result of 1:5,000 scale digital map in all watersheds and all analysis models. The SRTM DEM shows the most similarity to the digital map than ASTER DEM in all of the watershed scale and analysis models. HEC-GeoRAS and RiverCAD model are efficient models for flood inundation analysis in small watershed and HEC-GeoRAS and Ras Mapper model are efficient in medium to large watershed.

Flood Risk Mapping with FLUMEN model Application (FLUMEN 모형을 적용한 홍수위험지도의 작성)

  • Cho, Wan Hee;Han, Kun Yeun;Ahn, Ki Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.169-177
    • /
    • 2010
  • Recently due to the typhoon and extreme rainfall induced by abnormal weather and climate change, the probability of severe damage to human life and property is rapidly increasing. Thus it is necessary to create adequate and reliable flood risk map in preparation for those natural disasters. The study area is Seo-gu in Daegu which is located near Geumho river, one of the tributaries of Nakdong river. Inundation depth and velocity at each time were calculated by applying FLUMEN model to the target area of interest, Seo-gu in Daegu. And the research of creating flood risk map was conducted according to the Downstream Hazard Classification Guidelines of USBR. The 2-dimensional inundation analysis for channels and protected lowland with FLUMEN model was carried out with the basic assumption that there's no levee failure against 100 year precipatation and inflow comes only through the overflowing to the protected lowland. The occurrence of overflowing was identified at the levee of Bisan-dong located in Geumho watershed. The level of risk was displayed for house/building residents, drivers and pedestrians using information about depth and velocity of each node computed from the inundation analysis. Once inundation depth map and flood risk map for each region is created with this research method, emergency action guidelines for residents can be systemized and it would be very useful in establishing specified emergency evacuation plans in case of levee failure and overflowing resulting from a flood.

Evaluation of Drain Pump System by Inundation Analysis in Urban Underground Passage (도시 지하차도 침수 분석을 통한 강제배제시설 평가)

  • Lee, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1192-1200
    • /
    • 2007
  • A general rainfall outflow in urban drainage has early time of concentration because urban drainage areas are most paved area. In general, rainfall outflow is flowed in drainage pump station and is discharged to rivers in urban areas. However it is excluded through drainage pumps about a heavy rainfall which exceed the design rainfall and the rainfall outflows increase the urban inundation risk. A current pump operation is control according to water level of collecting well or reservoir in drain pump station. But recently, the localized downpours are happened frequently in urban drainage and the current pump stations are frequently incapable of the heavy rainfall outflows. In this study, a real urban inundation was simulated and the drain capacity of drain pump station was evaluated by analysis about flood-factor in urban underground passage. Then the analysis about the inundation was done by the simulation about the real rainfall which cause the inundation. Also, in the simulation the inundation risk and the evaluation of flood-factor were analyzed according to change of the pump operation rule.

  • PDF

Analysis of Urban Flood Damage Using SWMM5 and FLUMEN Model of Sadang Area in Korea

  • Li, Heng;Kim, Yeonsu;Lee, Seungsoo;Song, Miyeon;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.396-396
    • /
    • 2015
  • Frequent urban floods affect the human safety and economic properties due to a lack of the capacity of drainage system and the increased frequency of torrential rainfall. The drainage system has played an important role in flooding control, so it is necessary to establish the effective countermeasures considering the connection between drainage system and surface flow. To consider the connection, we selected SWMM5 model for analyzing transportation capacity of drainage system and FLUMEN model for calculating inundation depth and time variation of inundation area. First, Thiessen method is used to delineate the sub-catchments effectively base on drainage network data in SWMM5. Then, the output data of SWMM5, hydrograph of each manhole, were used to simulate FLUMEN to obtain inundation depth and time variation of inundation area. The proposed method is applied to Sadang area for the event occurred in $27^{th}$ of July, 2011. A total of 11 manholes, we could check the overflow from the manholes during that event as a result of the SWMM5 simulation. After that, FLUMEN was utilized to simulate overland flow using the overflow discharge to calculate inundation depth and area on ground surface. The simulated results showed reasonable agreements with observed data. Through the simulations, we confirmed that the main reason of the inundation was the insufficient transportation capacities of drainage system. Therefore cooperation of both models can be used for not only estimating inundation damages in urban areas but also for providing the theoretical supports of the urban network reconstruction. As a future works, it is recommended to decide optimized pipe diameters for efficient urban inundation simulations.

  • PDF

Rainfall Forecasting Using Satellite Information and Integrated Flood Runoff and Inundation Analysis (I): Theory and Development of Model (위성정보에 의한 강우예측과 홍수유출 및 범람 연계 해석 (I): 이론 및 모형의 개발)

  • Choi, Hyuk Joon;Han, Kun Yeun;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.597-603
    • /
    • 2006
  • The purpose of this study is to improve the short term rainfall forecast skill using neural network model that can deal with the non-linear behavior between satellite data and ground observation, and minimize the flood damage. To overcome the geographical limitation of Korean peninsula and get the long forecast lead time of 3 to 6 hour, the developed rainfall forecast model took satellite imageries and wide range AWS data. The architecture of neural network model is a multi-layer neural network which consists of one input layer, one hidden layer, and one output layer. Neural network is trained using a momentum back propagation algorithm. Flood was estimated using rainfall forecasts. We developed a dynamic flood inundation model which is associated with 1-dimensional flood routing model. Therefore the model can forecast flood aspect in a protected lowland by levee failure of river. In the case of multiple levee breaks at main stream and tributaries, the developed flood inundation model can estimate flood level in a river and inundation level and area in a protected lowland simultaneously.

Study on Application of Diffusion Wave Inundation Analysis Model Linked with GIS (GIS와 연계한 확산파 침수해석 모형의 적용에 대한 연구)

  • Cho, Wan-Hee;Han, Kun-Yeon;Choi, Seung-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.88-100
    • /
    • 2009
  • An inundation analysis was performed on Hwapocheon, one of the tributaries of Nakdong River, which was inundated by heavy rain in August, 2002 with overtopping and levee break. The results of the developed model, 2D diffusion wave inundation analysis model, was compared with inundation trace map as well as inundation depth in terms of time and maximum inundated area calculated from FLUMEN model for the assessment of model applicability. The results from the developed model showed high fitness of 88.61% in comparison with observed data. Also maximum inundated area and spatial distribution of inundation zone were also found to be consistent with the results of FLUMEN model. Therefore, inundation zone and maximum inundation area calculated over a period of time by adopting 2D diffusion wave inundation analysis model can be used as a database for identifying high risk areas of inundation and establishing flood damage reduction measures.

  • PDF

Two-Dimensional Model for the Prediction of Inundation Area in Urbanized Rivers (도시하천에서의 홍수범람도 작성을 위한 2차원 모형의 개발)

  • 한건연;박재홍
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.119-131
    • /
    • 1995
  • Two-dimensional diffusion and kinematic hydrodynamic models have been studied for preparing the flood inundation map. The models have been tested by applying to one-dimensional dam-break problem. The results have good agreements compared with those of dynamic wave model. The diffusion wave model produces the mass conservation error close to zero. Floodwave analyses for two-dimensional floodplain with obstruction and channel-floodplain show both stable and efficient results. The model presented in this study can be used for flood inundation map and flood warning system.

  • PDF

Analysis of Flooding Discharge in Seoul-Metropolitan Area based on Return Periods

  • Ang Peng;Seong Cheol Shin;Quan Feng;Junhyeong Lee;Soojun Kim;Hung Soo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.349-349
    • /
    • 2023
  • In recent years, urban floods have become more frequent, causing significant harm to society and resulting in substantial losses to the national economy and people's lives and property. To assess the impact of floods on people's safety and property in Seoul, annual precipitation data from 1980 to 2020 was analyzed for return periods of 5, 10, 20, 50, and 100 years. A rainfall runoff simulation model for Seoul was established using HEC-HMS and HEC-RAS models. The study revealed that at a 5-year return period, water began to accumulate in Seoul, but it was not severe. However, at a 10-year return period, the water accumulation was relatively serious, and inundation began to occur. At a 20-year return period, there was serious water accumulation and inundation in Seoul. During a 50-year return period, Seoul suffered from severe inundation in commercial areas, resulting in substantial losses to the local economy. The findings indicate that Seoul City faces high flood risks, and measures should be taken to mitigate the impact of floods on the city's residents and economy.

  • PDF

A Prototype of the Map Viewer based Spatial DB for the Integrated Urban Flooded Area Management System (도시침수 통합관리 시스템 구축을 위한 공간DB기반 Map Viewer 프로토타입 설계)

  • Kim, Ki-Uk;Seo, Tae-Woong;Kim, Chang-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.339-342
    • /
    • 2008
  • Recently the life and property damage caused by urban inundation have increased. In order to prevent the damage by inundation the researches for displaying the flooded areas through integrating SWMM and GIS have been progressed. However most of flood analysis systems only have used the GIS to display the flooded areas, and don't provide the integration disaster information to prevent the inundation. In this paper, we design a prototype for the Map Viewer based Spatial DB for the integrated urban floooded area management system. And we implement the spatial DB conversion module.

  • PDF