• Title/Summary/Keyword: flexibility element

Search Result 340, Processing Time 0.03 seconds

Ductility-based design approach of tall buildings under wind loads

  • Elezaby, Fouad;Damatty, Ashraf El
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • The wind design of buildings is typically based on strength provisions under ultimate loads. This is unlike the ductility-based approach used in seismic design, which allows inelastic actions to take place in the structure under extreme seismic events. This research investigates the application of a similar concept in wind engineering. In seismic design, the elastic forces resulting from an extreme event of high return period are reduced by a load reduction factor chosen by the designer and accordingly a certain ductility capacity needs to be achieved by the structure. Two reasons have triggered the investigation of this ductility-based concept under wind loads. Firstly, there is a trend in the design codes to increase the return period used in wind design approaching the large return period used in seismic design. Secondly, the structure always possesses a certain level of ductility that the wind design does not benefit from. Many technical issues arise when applying a ductility-based approach under wind loads. The use of reduced design loads will lead to the design of a more flexible structure with larger natural periods. While this might be beneficial for seismic response, it is not necessarily the case for the wind response, where increasing the flexibility is expected to increase the fluctuating response. This particular issue is examined by considering a case study of a sixty-five-story high-rise building previously tested at the Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario using a pressure model. A three-dimensional finite element model is developed for the building. The wind pressures from the tested rigid model are applied to the finite element model and a time history dynamic analysis is conducted. The time history variation of the straining actions on various structure elements of the building are evaluated and decomposed into mean, background and fluctuating components. A reduction factor is applied to the fluctuating components and a modified time history response of the straining actions is calculated. The building components are redesigned under this set of reduced straining actions and its fundamental period is then evaluated. A new set of loads is calculated based on the modified period and is compared to the set of loads associated with the original structure. This is followed by non-linear static pushover analysis conducted individually on each shear wall module after redesigning these walls. The ductility demand of shear walls with reduced cross sections is assessed to justify the application of the load reduction factor "R".

Influence of Column Base Rigidity on Behavior of Steel Buildings (강구조물 지지부의 강성도가 구조물 거동에 미치는 영향)

  • 권민호;박문호;장준호;박순응
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.165-172
    • /
    • 2002
  • Generally, the steel rigid frame has been analyzed using finite element analysis tools. While many efforts have been poured into the understanding and accurate prediction for the nonlinear behavior of the columns and beam-columns connections, the base of the columns are modeled as simply hinged or fixed. However, the base of the steel columns practically is neither fixed not hinged. It behaves as semi-rigid. In this paper, the supports of the columns we modeled as semi-rigid and the importance of such approach in moment-resisting columns is evaluated. Two typical buildings designed by the US specification are modeled and analyzed by the finite element based on stiffness method and flexibility method. The column bases of three-story buildings are modeled as rotational springs with a varying degree of stiffness and strength that simulates the semi-rigidity of the base. Depending on the degree of stiffness and strength, the semi-rigidity varies from the hinged to the fixed. Buildings with semi-rigid column bases behaves similarly to the building with fixed bases. It has been numerically observed through the pushover and nonlinear time history analyses that the decrease of the stiffness of the column base induces the rotational demand on the int air beams. an increase of rotation demands on the first store connections and lead to a soft-story mechanists Due often to the construction and environmental effects, undesired reduction of column base stiffness may cause an increase of rotation demands on the first store connections and lead to a soft-story mechanism.

Review on the Three-Dimensional Magnetotelluric Modeling (MT 법의 3차원 모델링 개관)

  • Kim, Hee-Joon;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.148-154
    • /
    • 2004
  • This article reviews the development of three-dimensional (3-D) magnetotelluric (MT) modeling. The 3-D modeling of electromagnetic fields is essential in understanding the physics of MT soundings, and in implementing an inversion method to reconstruct a 3-D resistivity image. Although various numerical schemes have been developed over the last two decades, practical methods have been quite limited. However, the recent rapid improvement in computer speed and memory, as well as the advance in iterative solution algorithms for a large system of equations, makes it possible to model the MT responses of complex 3-D structures, which have been very difficult to simulate before. The use of staggered grids in finite difference method has become popular, conserving a magnetic flux and an electric current and allowing for realistic discontinuous fields. The convergence of numerical solutions has been greatly accelerated by adopting Krylov subspace methods, proper preconditioning techniques, and static divergence corrections. The vector finite-element method using edge elements is also free from the discontinuity problem, and seems a natural choice for modeling complex structures including irregular topography because its flexibility allows one to capture full geometric complexity.

The Case Study of Design on Steel Pipe Sheet Pile for Earth Retaining Wall on Deep Excavation (대심도 지반굴착을 위한 벽강관말뚝 흙막이공법의 설계 사례 연구)

  • Byung-Il Kim;Jong-Ku Lee;Kyoung-Tae Kim;Kang-Han Hong;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 2023
  • In this study, the results of the elasto-plastic beam analysis, finite element analysis and optimization design of the steel pipe sheet pile applied as an earth retaining wall under the deep excavation were presented. Through this study, it was found that the high-strength and sea resistant steel pipe has high allowable stress, excellent structural properties, favorable corrosion, and high utilization as an earth retaining wall, and the C-Y type joint has significantly improved the tensile strength and stiffness compared to the traditional P-P type. In addition, it was investigated that even if the leak or defect of the wall occurs during construction, it has the advantage of being able to be repaired reliably through welding and overlapping. In the case of steel pipe wall, they were evaluated as the best in views of the deep excavation due to the large allowable bending stress and deformation flexibility for the same horizontal displacement than CIP or slurry wall. Elasto-plastic and finite element analysis were conducted in consideration of ground excavation under large-scale earth pressure (uneven pressure), and the results were compared with each other. Quantitative maximum value were found to be similar between the two methods for each item, such as excavation behavior, wall displacement, or member force, and both analysis method were found to be applicable in design for steel pipe sheet pile wall. Finally, it was found that economical design was possible when determining the thinnest filling method with concrete rather than the thickest hollow shape in the same diameter, and the depth (the embedded length through normality evaluation) without rapidly change in displacement and member force.

A Delphi Study of Standardization Strategies for Disruptive Technologies (파괴적 기술 분야에 대한 표준화 전략 연구: 전문가 델파이 조사를 중심으로)

  • Eom, Doyoung;Kim, Dong-hyu;Lee, Heejin
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.3
    • /
    • pp.483-510
    • /
    • 2016
  • Disruptive technology is increasingly gaining attention by industries, standards development organizations (SDOs), academia, government and regulatory bodies due to its massive scope of impact on the incumbents and consumers. Companies that take a lead in new technologies intend to dominate the global market by making their technologies into an international standard. However, they tend to seek ways of by-passing the slow procedures of formal SDOs that often hinder prompt action in response to rapid changes in technology and market situations. In the area of disruptive technologies, there is a need to harmonize standardization efforts in formal SDOs for various companies and stakeholders to reap the benefits of technological development and diffusion of innovation. This paper examines the reasons why standardization is more active using market-based mechanisms than through formal SDOs for disruptive technologies. We conducted a Delphi study to investigate standardization strategies in the area of disruptive technologies. This research found that experts understood the core element of disruptive technologies as creating new markets and changing the competition basis in existing industries through the transformation of consumers' behavior. Based on these core characteristics, experts agreed that flexibility and speed are the most important factors for standardization. Results also show that the perception that standardization activities are not directly connected to companies' profit-making is the key barrier to links between research and companies' participation in standardization. This research provides implications for formal SDOs and policymakers.

Methodology for Assessing an Integrated Mobility of the Passenger Passing through Intermodal Transit Center (복합환승역사 통행자 기반 통합 모빌리티 평가 기법 개발)

  • You, So-young;Kim, Kyongtae;Jeong, Eunbi;Lee, Jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.12-28
    • /
    • 2017
  • The core of the transportation service, so-called Mobility 4.0 is the flexibility of the entire mobility and its implementation. By doing so, the most essential element is to build a platform to link a supply and a demand simultaneously. In other word, a comprehensive analytical framework is to be set with a data repository which can be periodically updated. With such circumstances, the entire trip chain including pedestrian movements is required to be thoroughly investigated and constructed at the viewpoint of the intermodal transit station. A few studies, however, have been attempted. In this study, the comprehensive analytical framework with the integrated mobility at intermodal transit station was proposed, which consisted of the three modules; 1) Data Repository Extracting from Smart Card DB, 2) Framework of Analyzing Integrated Mobility, and 3) Interpretation of the Integrated Mobility with GIS information and the other factors. A case study with the seven railway stations (Sadang, Sindorom, Samseong, Gwanghwanoon, Gangnam, Jamsil, Seoul Nat'l Univ. of Education) was conducted. The stations of the case study were clustered by the three groups with the statistical ground, and it is most likely to understand the effect of a variety of factors and a comprehensive data-driven analyses with the entire trip stages.

An Efficient Weight Signaling Method for BCW in VVC (VVC의 화면간 가중 양예측(BCW)을 위한 효율적인 가중치 시그널링 기법)

  • Park, Dohyeon;Yoon, Yong-Uk;Lee, Jinho;Kang, Jungwon;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.346-352
    • /
    • 2020
  • Versatile Video Coding (VVC), a next-generation video coding standard that is in the final stage of standardization, has adopted various techniques to achieve more than twice the compression performance of HEVC (High-Efficiency Video Coding). VVC adopted Bi-prediction with CU-level Weight (BCW), which generates the final prediction signal with the weighted combination of bi-predictions with various weights, to enhance the performance of the bi-predictive inter prediction. The syntax element of the BCW index is adaptively coded according to the value of NoBackwardPredFlag which indicates if there is no future picture in the display order among the reference pictures. Such syntax structure for signaling the BCW index could violate the flexibility of video codec and cause the dependency issue at the stage of bitstream parsing. To address these issues, this paper proposes an efficient BCW weight signaling method which enables all weights and parsing without any condition check. The performance of the proposed method was evaluated with various weight searching methods in the encoder. The experimental results show that the proposed method gives negligible BD-rate losses and minor gains for 3 weights searching and 5 weights searching, respectively, while resolving the issues.

The Study on New Poverty and Change of Poverty Policy in Korea (한국의 신빈곤현상과 탈빈곤정책에 관한 연구: 근로빈곤층(the working poor)의 실태를 중심으로)

  • Kim, Young-Lan
    • Korean Journal of Social Welfare
    • /
    • v.57 no.2
    • /
    • pp.41-70
    • /
    • 2005
  • The object of the study is to examine the change of social-economic structure and poverty-shape to escape poverty. In Korea, the working poor have been increased by flexibility and division of labor market since the economic crisis in 1997, and are faced with hard conditions due to the vulnerable welfare system. Especially the workers who engage in irregular jobs were increased by restructure of labor market. Besides they are in unstable employment terms such as low payment, low-skill and exclusion from welfare-benefit. Many small independent businessmen are also in danger of poverty for enterprises trend to move abroad by globalization. Poverty policy in our country was focused on the absolute poor class that has relation with old age, unemployment, disable, disease etc, so they were the object of welfare policy. The poverties, however, are increasing rapidly after the economic crisis, and they work so hard but are still poor, that is, participation in labor market doesn't become an element to escape poverty. Thus the emergence of new poverties whose core consists of the working poor becomes to need new poverty policy. The study is to survey change of their economic conditions, their welfare conditions, their experiences and responses of social dangers after the economic crisis, then to explore the policy to escape poverty. As the result of the study, it shows that the working poor experienced many kinds of social dangers like unemployment, decrease of income etc. In their welfare conditions as their responses to the social dangers, the benefit of social insurance, enterprise welfare like legal retirement pay and paid leave and private welfare such as private pension and insurance are low. The working poor are faced with social dangers, moreover, they don't have skill or education for adapting themselves to information society. The study says that it needs variable policies for the working poor to escape poverty, and suggests payment & tax policies as stable income policy, occupational discipline and skill-education for promoting the quality of employment, moreover, social insurance as expansion of social welfare policy and housing & education policies whose objects are the working poor.

  • PDF

Design of Reconfigurable Coprocessor for Multimedia Mobile Terminal (멀티미디어 무선 단말기를 위한 재구성 가능한 코프로세서의 설계)

  • Kim, Nam-Sub;Lee, Sang-Hun;Kum, Min-Ha;Kim, Jin-Sang;Cho, Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.63-72
    • /
    • 2007
  • In this paper, we propose a novel reconfigurable coprocessor for multimedia mobile terminals. Because most of multimedia operations require fast operations of large amount of data in the limited clock frequency, it is necessary to enhance the performance of the embedded processor that is widely used in current multimedia mobile terminals. Therefore, we proposed and have designed the coprocessor which had the ability of fast operations of multimedia data. The proposed coprocessor was not only reconfigurable, but also flexible and expandable. The proposed coprocessor has been designed by using VHDL and compared with previous reconfigurable coprocessors and a commercial embedded processor in architecture and speed. As a result of the architectural comparison, the proposed coprocessor had better structure in terms of hardware size and flexibility. Also, the simulation results of DCT application showed that the proposed coprocessor was 26 times faster than a commercial ARM processor and 11 times faster than the ARM processor with fast DCT core.

Groundwater Flow Model for the Pollutant Transport in Subsurface Porous Media Theory and Modeling (지하다공질(地下多孔質) 매체(媒體)속에서의 오염물질이동(汚染物質移動) 해석(解析)을 위한 지하수(地下水)흐름 모형(模型))

  • Cho, Won Cheal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.97-106
    • /
    • 1989
  • This paper is on the modeling of two-dimensional groundwater flow, which is the first step of the development of Dynamic System Model for groundwater flow and pollutant transport in subsurface porous media. The particular features of the model are its versatility and flexibility to deal with as many real-world problems as possible. Points as well as distributed sources/sinks are included to represent recharges/pumping and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Sources/sinks strength over each element and node, hydraulic head at each Dirichlet boundary node and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution methed for the matrix equation approximating the partial differential equation of groundwater flow. The model also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. The groundwater flow model shall be combined with the model of pollutant transport in subsurface porous media. Then the combined model, with the applications of the Eigenvalue technique and the Dynamic system theory, shall be improved to the Dynamic System Model which can simulate the real groundwater flow and the pollutant transport accurately and effectively for the analyses and predictions.

  • PDF