• Title/Summary/Keyword: flexibility element

Search Result 340, Processing Time 0.033 seconds

ON GENERALIZED LATTICE B2

  • HASAN KELES
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.1_2
    • /
    • pp.1-8
    • /
    • 2023
  • This study is on a Boolean B or Boolean lattice L in abstract algebra with closed binary operation *, complement and distributive properties. Both Binary operations and logic properties dominate this set. A lattice sheds light on binary operations and other algebraic structures. In particular, the construction of the elements of this L set from idempotent elements, our definition of k-order idempotent has led to the expanded definition of the definition of the lattice theory. In addition, a lattice offers clever solutions to vital problems in life with the concept of logic. The restriction on a lattice is clearly also limit such applications. The flexibility of logical theories adds even more vitality to practices. This is the main theme of the study. Therefore, the properties of the set elements resulting from the binary operation force the logic theory. According to the new definition given, some properties, lemmas and theorems of the lattice theory are examined. Examples of different situations are given.

Design of a ParamHub for Machine Learning in a Distributed Cloud Environment

  • Su-Yeon Kim;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.161-168
    • /
    • 2024
  • As the size of big data models grows, distributed training is emerging as an essential element for large-scale machine learning tasks. In this paper, we propose ParamHub for distributed data training. During the training process, this agent utilizes the provided data to adjust various conditions of the model's parameters, such as the model structure, learning algorithm, hyperparameters, and bias, aiming to minimize the error between the model's predictions and the actual values. Furthermore, it operates autonomously, collecting and updating data in a distributed environment, thereby reducing the burden of load balancing that occurs in a centralized system. And Through communication between agents, resource management and learning processes can be coordinated, enabling efficient management of distributed data and resources. This approach enhances the scalability and stability of distributed machine learning systems while providing flexibility to be applied in various learning environments.

Application of ADE-PML Boundary Condition to SEM using Variational Formulation of Velocity-Stress 3D Wave Equation (속도-응력 변분식을 이용한 3차원 SEM 탄성파 수치 모사에 대한 ADE-PML경계조건의 적용)

  • Cho, Chang-Soo;Son, Min-Kyung
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2012
  • Various numerical methods in simulation of seismic wave propagation have been developed. Recently an innovative numerical method called as the Spectral Element Method (SEM) has been developed and used in wave propagation in 3-D elastic media. The SEM that easily implements the free surface of topography combines the flexibility of a finite element method with the accuracy of a spectral method. It is generally used a weak formulation of the equation of motion which are solved on a mesh of hexahedral elements based on the Gauss-Lobatto-Legendre integration rule. Variational formulations of velocity-stress motion are newly modified in order to implement ADE-PML (Auxiliary Differential Equation of Perfectly Matched Layer) in wave propagation in 3-D elastic media, because a general weak formulation has a difficulty in adapting CFS (Complex Frequency Shifted) PML (Perfectly Matched Layer). SEM of Velocity-Stress motion having ADE-PML that is very efficient in absorbing waves reflected from finite boundary is verified with simulation of 1-D and 3-D wave propagation.

Finite Element Analysis of a Customized Eyeglass Frame Fabricated by 3D Printing (3 차원 프린팅으로 제작된 개인맞춤형 안경테의 유한요소해석)

  • Lee, Ji-Eun;Im, Young-Eun;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • In recent years, 3D printing has received increasing attention due to releases of low-cost 3D printers based on open-source platform. 3D printing is expected to reduce the barrier to entry in the traditional manufacturing processes by increasing flexibility and creating an advantage to manufacture customized products at low costs. In this study, a unique eyeglass frame was designed to have a snake shape, which has an asymmetric geometry unlike traditional frames. The eyeglass frame was designed in a customized manner by reflecting dimensional characteristics of a customer's face. Finite element analysis was performed to investigate the structural safety of the 3D printed frames during the assembly process. The analysis also considered the effect of anisotropic material properties as determined by tensile tests. The eyeglass frame was then printed using the customized sizes and the best building process. The eyeglass frame was successfully assembled with lenses and without structural failure during its assembly procedure.

Buckling Analysis of Thin-Walled Laminated Composite I-Beams Including Shear Deformation (전단변형을 고려한 적층복합 I형 박벽보의 좌굴해석)

  • Back, Sung Yong;Lee, Seung Sik;Park, Yong Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.575-584
    • /
    • 2006
  • In this paper, a shear-flexible finite element model is developed for the buckling analysis of axially loaded, thin-walled composite I-beams. Based on an orthogonal Cartesian coordinate system, the displacement fields are defined using the first-order shear-deformable beam theory. The derived element takes into account flexural shear deformation and torsional warping deformation. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements, were developed to solve the governing equations. An inverse iteration with shift eigenvalue solution was used to solve the resulting linearized buckling problem. A parametric study was conducted to show the importance of shear flexibility and fiber orientation on the buckling behavior of thin-walled composite beams. A good agreement was obtained among the proposed shear-flexible model, other results available in literature, and the finite element solution.

A Study on a Nonlinear Cable Finite Element (非線形 케이블 有限要素에 관한 硏究)

  • 장승필;박정일
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.93-101
    • /
    • 1989
  • A geometrically nonlinear cable finite element is presented to use in the static or dynamic modeling of offshore and onshore structures such as guyed tower, tension leg platform or mooring buoy, submarine cable, cable-stayed bridge, suspension bridge, cable roof and so on. The cable finite element is derived directly from the compatibility equations and flexibility matrix of elastic catenary cable theory for the arbitary plane loading and geome try. A general and virsatile computer program has been developed to perform the analyses of cable member itself or cable guyed or suspened structures, in which Newmark-$\beta$ method is used to obtain a time domain solution and Newton-Raphson iteration method is used to solve the nonlinear system of compatibility equations of cable and algebraic static or dynamic equations at each time step. The results from the static and dynamic analysis of a cable member by the computer program are summarized and presented.

  • PDF

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.

Selection method of sports talents using physical activity promotion system (건강체력평가시스템을 활용한 스포츠영재 선발방법)

  • Lee, Mi Sook;Hong, Chong Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.793-802
    • /
    • 2013
  • There are many problems to single sports talents out of test applicants. The physical activity promotion system has been performed to all elements school students of both 5 and 6 grades in order to evaluate overall health and physical activities since 2009. This system includes some variables which could measure the students' sports latent power, so that the system could be used to single out sports talents. In this work, we propose a primary screening method that element school teachers might evaluate sports talents based on the data of the physical activity promotion system. Two more sports talent indices which are sports flexibility index and sports endurance index are defined. The selection method of sports talents is developed by using sports latent indices including sports power and cardiorespiratory indices. This method is efficient from the view of time and cost aspects, since we do not need to remeasure all elements school students again.

Study of Flexible Forming Process Involving the Use of Sectional Flexible Die for Sheet Material (분할가변금형을 이용한 박판의 가변성형공정 연구)

  • Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.299-305
    • /
    • 2010
  • In general, the flexible forming die that has been used in the flexible forming process has the identical punch size; hence, its flexibility is relatively low because the range of allowable curvature radii is limited due to the uniform punch tip radius. Hence, a conceptual design of a sectional flexible die is presented for enhancing the flexibility of the forming process. Two punches of different sizes are used to configure the arbitrary forming surface. For a forming region with a relatively large curvature radius, a large punch array block is used; on the other hand, for the forming regions with small curvature radii, a small punch block is used. The cross-sectional profiles are compared with the target shape for evaluating the effectiveness of the process. Consequently, it is confirmed that the sectional flexible die can be used along with a combination of punch blocks of different sizes for manufacturing objective surfaces of complex shapes.

Damage detection on a full-scale highway sign structure with a distributed wireless sensor network

  • Sun, Zhuoxiong;Krishnan, Sriram;Hackmann, Greg;Yan, Guirong;Dyke, Shirley J.;Lu, Chenyang;Irfanoglu, Ayhan
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.223-242
    • /
    • 2015
  • Wireless sensor networks (WSNs) have emerged as a novel solution to many of the challenges of structural health monitoring (SHM) in civil engineering structures. While research projects using WSNs are ongoing worldwide, implementations of WSNs on full-scale structures are limited. In this study, a WSN is deployed on a full-scale 17.3m-long, 11-bay highway sign support structure to investigate the ability to use vibration response data to detect damage induced in the structure. A multi-level damage detection strategy is employed for this structure: the Angle-between-String-and-Horizon (ASH) flexibility-based algorithm as the Level I and the Axial Strain (AS) flexibility-based algorithm as the Level II. For the proposed multi-level damage detection strategy, a coarse resolution Level I damage detection will be conducted first to detect the damaged region(s). Subsequently, a fine resolution Level II damage detection will be conducted in the damaged region(s) to locate the damaged element(s). Several damage cases are created on the full-scale highway sign support structure to validate the multi-level detection strategy. The multi-level damage detection strategy is shown to be successful in detecting damage in the structure in these cases.