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ON GENERALIZED LATTICE B2

HASAN KELEŞ

Abstract. This study is on a Boolean B or Boolean lattice L in abstract

algebra with closed binary operation ∗, complement and distributive prop-

erties. Both Binary operations and logic properties dominate this set. A
lattice sheds light on binary operations and other algebraic structures. In

particular, the construction of the elements of this L set from idempotent

elements, our definition of k-order idempotent has led to the expanded def-
inition of the definition of the lattice theory. In addition, a lattice offers

clever solutions to vital problems in life with the concept of logic. The re-

striction on a lattice is clearly also limit such applications. The flexibility
of logical theories adds even more vitality to practices. This is the main

theme of the study. Therefore, the properties of the set elements resulting

from the binary operation force the logic theory. According to the new def-
inition given, some properties, lemmas and theorems of the lattice theory

are examined. Examples of different situations are given.
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1. Introduction

The term ”Boolean algebra” honors George Boole (1815–1864), a self-educated
English mathematician. He introduced the algebraic system initially in a small
pamphlet, The Mathematical Analysis of Logic, published in 1847 in response
to an ongoing public controversy between Augustus De Morgan and William
Hamilton, and later as a more substantial book, to let us start with the defi-
nition of an idempotent element. Laws of Thought, published in 1854. Boole’s
formulation differs from that described above in some important respects. For
example, conjunction and disjunction in Boole were not a dual pair of operations.
Boolean algebra emerged in the 1860s, in papers written by William Jevons and
Charles Sanders Peirce. The first systematic presentation of Boolean algebra
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and distributive lattices is owed to the 1890 Vorlesungen of Ernst Schröder. The
first extensive treatment of Boolean algebra in English is A. N. Whitehead’s
1898 Universal Algebra. Boolean algebra as an axiomatic algebraic structure
in the modern axiomatic sense begins with a 1904 paper by Edward V. Hunt-
ington. Boolean algebra came of age as serious mathematics with the work of
Marshall Stone in the 1930s, and with Garrett Birkhoff’s 1940 Lattice Theory.
In the 1960s, Paul Cohen, Dana Scott, and others found deep new results in
mathematical logic and axiomatic set theory using offshoots of Boolean algebra,
namely forcing and Boolean-valued models [5]. In this way, many authors have
brought their studies on this subject to the literature.

There are many uses for idempotent matrices, especially regression analysis
in statistics, economics and Computer Science. Coined 1870 by American math-
ematician Benjamin Peirce in context of algebra in [1]. In particular, by taking
the variables to represent values of on and off (or 0 and 1), Boolean algebra
is used to design and analyze digital switching circuitry, such as that found in
personal computers, pocket calculators, cd players, cellular telephones, and a
host of other electronic products in [4].

There are many studies on idempotent matrices in the literature. Let us start
with the information that takes us to the depth of the study. The set of solutions
of the equation x2 = 1 in real numbers is {−1, 1} . The real number −1 is not
an idempotent element. The set of solution of the equation x2 = x is {0, 1}.
The set of solutions of this equation, namely 0 and 1 are idempontent elements
in [2].

The set of all matrices of order n over a field F is denoted by Mn(F ).
The equation AX = B is written for matrices A,X,C ∈ Mn(F ). If matrix
A = C = X is taken in equation AX = C, then equation X2 = X is ob-
tained. Necessary conditions in the solution of this equation are necessary for
the following definition.

X2 −X = [0] =⇒ X(X − In) = [0] =⇒ X = [0], X = In.

Also, the solutions of the equation X2 = X are zero dividing matrices,

X2 −X = [0]{−1, 0, 1}.X ̸= [0], X − In ̸= 0.

2. Main results

Definition 2.1. A group is a setB equipped with a binary operation ∗ : B×B →
B that associates an element a ∗ b ∈ B to every to elements a, b ∈ B , and
having the following properties: ∗ is associative, has an identity element e ∈ B,
and every element in B is invertible (w.r.t. ∗). More explicitly, this means that
the following equations hold for all a, b, c ∈ B :

(i) (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity);
(ii) a ∗ e = e ∗ a = a (identity);
(iii) For every a ∈ B , there is some a−1 ∈ B such that a ∗ a−1 = a−1 ∗ a = e

(inverse).
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A set B together with an operation ∗ : B×B → B and satisfying only conditions
(i) and (ii) is called a monoid in [6, 7].

The set all idempotent elements in the monoid (R,+) is {0} and the set of
all idempotent elements in the monoid (R, ·) is {0,1}.
The set of all periodic elements kthdegree in the monoid B with a binary oper-
ation ∗ is denoted by

P k(B, ∗) = {a ∈ B| a ∗ · · · ∗ a︸ ︷︷ ︸
(k+1)−times

= a, k ∈ Z+}.

The set of all idempotent elements in the monoid B with a binary operation ∗
is denoted by

I2(B, ∗) = {a ∈ B|a ∗ a = a, }.
The set of all k−potent elements in the monoid B with a binary operation ∗ is
denoted by

Ik(B, ∗) = {a ∈ B| a ∗ · · · ∗ a︸ ︷︷ ︸
k−times

, k ∈ Z+}.

Idempotent matrices have been the objects of many studies in matrix theory
and its applications. The set of idempotent elements on the monoid Mn(R, ·) is

Ik(Mn(R), ·) = {A = [aij ] ∈ Mn(R)|Ak = A, k ∈ Z+} = {[0], In, . . .}.

Or it is seen that

Ik(Mn(R, ·) = {A|A = [0] or A ∈ P k−1(Mn(R, ·)), k ∈ Z+}.

If n = 2 and k = 2 , this set M2(R), ·) is

I2(M2(R), ·) = {A = [aij ]2 ∈ M2(R)|A2 = A}

Then, the lattice B belonging to this monoid is also denoted by

kI
k(B,∗) = {A ∈ B|Ak = A, k ∈ Z+}.

or

kB = {emin., ..., A
k = A, ..., Imax.}.

If x ∈ 2(R,.) then

x2 = x =⇒ x2 − x =⇒ x(x− 1) = 0 =⇒ x = 0, x = 1.

The complement of x is x− 1 and the complement of x− 1 is x. Shortly,

2(R,.) = {0, 1}.

If B = {x ∈ R|xk = x},then B = {−1, 0, 1} and then the kth lattice belonging
to B in R with multiplication is

kB = {−1, 0, 1}.

And if k = 2 then 2B = {0, 1}.
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Definition 2.2. ([8]). A Boolean algebra B is a system B = (B,∧,∨,′ , 0, 1 )
such that ∧ and ∨ are binary operations on B, ”′” is a unary operation on B,
and 0, 1 ∈ B, and that the following conditions hold for all x, y, z ∈ B:

(i) x ∧ y = y ∧ x and x ∨ y = y ∨ x;
(ii) x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z;
(iii) (x ∧ y) ∨ y = y and (x ∨ y) ∧ y = y;
(iv) x ∧ (y ∨ z) = x ∧ y ∨ x ∧ z and x ∨ y ∧ z = (x ∨ y) ∧ (x ∨ z);
(v) x ∧ x′ = 0 and x ∨ x′ = 1.

Proposition 2.3. ([10, 11]). Let x, y ∈ B, x ≤ y then, the followings are
equivalent.

(i) x ≤ y.
(ii) x ∨ y = y.
(iii) x ∧ y = x.
(iv) x′ = 1− x.

An ordered structure (B,∨,∧,≤) is a Boolean lattice if and only if it satisfies
items (i), (ii) and (iii) of Proposition 2.3.

Definition 2.4. A ring in the mathematical sense is a set B together with two
binary operators + and ∗ (commonly interpreted as addition and multiplication,
respectively) satisfying the conditions i− v

(i) Additive associativity: For all a, b, c ∈ B, (a+ b) + c = a+ (b+ c),
(ii) Additive commutativity: For all a, b ∈ B, a+ b = b+ a,
(iii) Additive identity: There exists an element 0 ∈ B such that for all a ∈ B,

0 + a = a+ 0 = a,
(iv) Additive inverse: For every a ∈ B there exists −a ∈ B such that a+(−a) =

(−a) + a = 0,
(v) Left and right distributivity: For all a, b, c ∈ B, a ∗ (b+ c) = (a ∗ b)+ (a ∗ c)

and (b+ c) ∗ a = (b ∗ a) + (c ∗ a),
A ring satisfying all the following properties (vi)-(ix) is called a field and

called a division algebra if satisfying the properties vi, vii and ix in [9]
(vi) Multiplicative associativity: For all a, b, c ∈ B, (a ∗ b) ∗ c = a ∗ (b ∗ c) (a ring

satisfying this property is sometimes explicitly termed an associative ring).
Rings may also satisfy various optional conditions:

(vii) Multiplicative commutativity: For all a, b,∈ B, a∗b = b∗a (a ring satisfying
this property is termed a commutative ring),

(viii) Multiplicative identity: There exists an element 1 ∈ B such that a ̸= 0 for
all a ∈ B, 1 ∗ a = a ∗ 1 = a (a ring satisfying this property is termed a unit
ring, or sometimes a ”ring with identity”),

(ix) Multiplicative inverse: For each a ̸= 0 for all a ∈ B, there exists an element
a−1 ∈ B that a ̸= 0 for all a ∈ B, a ∗ a−1 = a−1 ∗ a = 1, where 1 is the
identity element.

The power set of a set B is the set of all subsets of B. The power set of
B is denoted by P(B). If the set B is finite with m elements, it is denoted by
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|B| = m. The effect of the operations defined on the set B is very important.
These operations take an effective role in the formation of the power set.

3. Generalized Lattice Bk

In this section, the basic concept of logic is discussed by considering the
idempotent elements which are the basic building blocks of the known lattice
theory. If B is an arbitrary ring then its set of central idempotents, which is the
set

Cen(B) = {e ∈ B|e2 = e, xe = ex = x for all x ∈ B}
becomes a Boolean algebra when its operations are defined by

x ∨ y := x+ y − xy = max{x, y}, x ∧ y := xy = min{x, y}.
Let B be an arbitrary ring. It is clear that Cen(B) ⊆ kB .
The current lattice is

B2 = (B,′ ,∧,∨, 0, 1 ) ≡ (B,′ ,∧,∨, 2B ).

If the equation xk = x is taken into account instead of the equation x2 = x, then

Bk ≡ (B,′ ,∧,∨, kB ),where k ≥ 2, k ∈ Z+.

In B2

x ∈ B ⇒ x2 = x ⇒ 2B = {0, 1}.
If the number of elements of the set B is m, then total number of elements in

power set is 2m in B2. This number is 3m in B3.

Example 3.1. Let x ∈ R and B = {x}. The power set of B in B2 is P(B) =
{∅, {x}}. But the power set of B in B3 is P(B) = {∅, {x}, {−x}}.

Proposition 3.2. Let B be a finite set in B3 with |B| = m. Then

|P(B)| = 3m.

Proof. Let |B| = m be the finite set in B3. Then,

m∑
i=0

(
m

i

) i∑
k=0

(
i

k

)
=

m∑
i=0

(
m

i

)
1m−i2i = (1 + 2)m = 3m.

□

Let T be true, F be false, and L be lie, imaginary or obscure in a logical
expression in calculations below.
In B3

x ∈ B ⇒ x3 = x ⇒ 3B = {−1, 0, 1}.
If x = 0 ⇒ x′ = 1 ∨ x′ = −1.

x ∨ x′ =

{
0, if x′ = 1

1, if x′ = −1
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Table 1. In this table, the logic values in B2 are given [3].

x x′ x ∧ x′ x ∨ x′

0 1 0 1
1 0 0 1
F T F T
T F F T

x ∧ x′ =

{
0, if x′ = 1

−1, if x′ = −1.

B3 = (B,′ ,∧,∨,−1, 0, 1 ) ≡ (B,′ ,∧,∨, 3B ).

B2 ⊆ B3.

Table 2. In this table, the logic values in B3 are given.

x x′
1 x′

2 x ∨ x′
1 x ∧ x′

1 x ∨ x′
2 x ∧ x′

2

0 -1 1 0 -1 1 0
1 0 -1 1 0 1 -1
-1 0 1 0 -1 1 -1
F L T F L T F
T F L T F T L
L F T F L T L

Proposition 3.3. Let B3 be a Boolean Lattice. Then the following properties
are equivalent for any x ∈ B.

(i) x′ = x2 − 1.
(ii) Any one x′ of x is in B2.
(iii) x′ = 1,x′ = −1.

Proof. Let B3 be a Boolean Lattice and x ∈ B. Then

x3 = x ⇒ x3 − x = 0 ⇒ x(x2 − 1) = 0

If (i) holds, then

x′ = x2 − 1 ⇒ (x+ 1)(x− 1) = 0 ⇒ x′ = 1 ⇒ (ii).

If (ii) and (i) hold, then

x′ = −1, x′ = −1 ⇒ (iii).

If (iii) holds, then

x′ = (x− 1), x′ = (x+ 1) ⇒ x′ = x2 − 1. ⇒ (i).

□
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Lemma 3.4. Let Bk be a Boolean ring. If k ∈ Z+ is odd, then

B2k ⊆ B3.

Proof. The proof is done by the induction method. For k = 1, B2 ⊆ B3. Let us
assume B2k−2 ⊆ B3 is true for k − 1. We have to prove that B2k ⊆ B3.

x ∈ B2k−2 ⇒ x2k−2 = x.

xk = (x2k−2)(x2−k) = x(x2)(xk)−1 = x3(x−1) = x2 = x.

⇒ x ∈ B3 ⇒ B2k ⊆ B3.

□

Lemma 3.5. Let B3 be a Boolean ring. Then

(i) x ∨ x′ = 1, x ∨ x′ = 0.
(ii) x ∧ x′ = −1, x ∧ x′ = 0.

Proof. It enough to prove this only for x = 0, loss of generality. Therefore, Proof
of (i):

x = 0 ⇒ x ∨ x′ = 1, x ∨ x′ = 0.

And Proof of (ii):

x = 0 ⇒ x ∧ x′ = −1, x ∧ x′ = 0.

□

Let us explain that it is necessary to use B3 in practice. −1 ≡ 2(mod3) in B3.
Although −1 ≡ 1(mod2) in B2, Likewise, 1 ̸= 2 in B3. Therefor B3 necessitates
from this situation.

4. Conclusion

In existing applications, the logic values in B are operated. This is due to
some gaps, concerns, etc. in the future. drives communities. I think that the
trust and quality of life of societies will increase when logic values are used in C
to sustain vital values.
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