References
- 조창수, 이희일, 2009, 회전된 엇갈린 격자를 이용한 탄성파 모델링에의 CPML 경계조건 적용, 지구물리와 물리탐사, 12, 183-191.
- 지헌철, 박정호, 김근영, 제일영, 신동훈, 신진수, 조창수, 이희일, 2010, 북한 핵실험 모니터링: 1, 2차 비교, 지구물리와 물리탐사, 13, 243-248.
- Appelo, D., and Petersson, N. A., 2008, A stable finite difference method for the elastic wave equation on complex geometries with free surfaces, Comm. Comput. Phys., 5, 84-107.
- Basabe, J. D. D., and Sen, M. K., 2007, Grid dispersion and stability criteria of some common finite-element methods for acoustic and elsatic wav equations, Geophyscis, 72, T81-T95. https://doi.org/10.1190/1.2785046
- Brenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200. https://doi.org/10.1006/jcph.1994.1159
- Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics, 50, 705-708. https://doi.org/10.1190/1.1441945
- Clayton, R., and Enquist, B., 1977, Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations, BSSA, 67, 1529-1540.
- Correia, D., and Jin, J.-M., 2005, On the Development of a Higher-Order PML, IEEE Trans. Antennas Propag., 53, 4157-4163. https://doi.org/10.1109/TAP.2005.859901
- Diaz, J., Ezziani, A., and Le Goff, N., 2011, Version 2.0 Gar6more3D, http://web.univ-pau.fr/-jdiaz1/gar63DCecill.html.
- Ely, G. P., Day, S. M., and Minster, J.-B., 2008, A support-operator method for visco-elastic wave modeling in 3D heterogeneous media, GJI, 172, 331-344.
- Festa, G., and Vilotte, J. P., 2005, The newmark scheme as velocity-stress time-staggering: and efficient PML implementation for spectral element simulations of elastodynamics, GJI, 161, 789-812.
- Kanamori, H., 1977, The energy release in great earthquakes, J. Geoph. Res., 82, 2981-2987. https://doi.org/10.1029/JB082i020p02981
- Komatitsch, D., and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 72, SM155-SM167. https://doi.org/10.1190/1.2757586
- Komatitsch, D., and Tromp, J., 1999, Introduction to the spectral-element method for 3-D seismic wave propagation, GJI, 139, 806-822.
- Komatitsch, D., and Vilotte, J.-P., 1998, The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures, BSSA, 88, 368-392.
- Li, Y. F., and Bou Matar, O., 2010, Convolutional pefectly matched layer for elastic second-order wave equation, J. Acoust. Soc. Am., 127, 1318-1327. https://doi.org/10.1121/1.3290999
- Martin, R., Komatitsch, D., and Gedney, S. D., 2008, A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation, Comput. Model. Eng. Sci., 37, 274-304.
- Martin, R., Komatitsch, D., Gedney S. D., and Bruthiaux, E., 2010, A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML), Comp. Model. Eng. Sci., 56, 17-42.
- Meza-Fajardo, K.-C., and Papageorgiou, A.-S., 2008, A non-convolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis, BSSA, 98, 1811-1836.
- Roden, J. A., and Gedney, S. D., 2000, Convolution PML (CPML): An efficcient FDTD implementation of the CFS-PML for arbitrary media, Microwave and Optical Technology Letters, 27, 334-339. https://doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
- Rodgers, A. J., and Pettersson, N. A., and Sjogreen, B., 2010, Simulation of topographic effects on seismic waves from shallow explosions near the North Korean nuclear test site with emphasis on shear wave generation, J. Geoph. Res., 115, B11309, doi:10.1029/2010JB007707.