DOI QR코드

DOI QR Code

Application of ADE-PML Boundary Condition to SEM using Variational Formulation of Velocity-Stress 3D Wave Equation

속도-응력 변분식을 이용한 3차원 SEM 탄성파 수치 모사에 대한 ADE-PML경계조건의 적용

  • Cho, Chang-Soo (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Son, Min-Kyung (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 조창수 (한국지질자원연구원 지진연구센터) ;
  • 손민경 (한국지질자원연구원 지진연구센터)
  • Received : 2012.03.16
  • Accepted : 2012.04.18
  • Published : 2012.05.31

Abstract

Various numerical methods in simulation of seismic wave propagation have been developed. Recently an innovative numerical method called as the Spectral Element Method (SEM) has been developed and used in wave propagation in 3-D elastic media. The SEM that easily implements the free surface of topography combines the flexibility of a finite element method with the accuracy of a spectral method. It is generally used a weak formulation of the equation of motion which are solved on a mesh of hexahedral elements based on the Gauss-Lobatto-Legendre integration rule. Variational formulations of velocity-stress motion are newly modified in order to implement ADE-PML (Auxiliary Differential Equation of Perfectly Matched Layer) in wave propagation in 3-D elastic media, because a general weak formulation has a difficulty in adapting CFS (Complex Frequency Shifted) PML (Perfectly Matched Layer). SEM of Velocity-Stress motion having ADE-PML that is very efficient in absorbing waves reflected from finite boundary is verified with simulation of 1-D and 3-D wave propagation.

탄성파 수치 모형 계산에 있어서 다양한 방법들이 개발되어 적용되었다. 최근에는 특히 탄성파 수치 모형 계산에 있어 혁신적인 방법인 SEM (Spectral Element Method)가 개발되어 사용되어 왔다. 이 방법은 지형을 자유롭게 표현하는데 있어 유연한 유한요소법의 장점에 정확성을 높인 방법이다. 일반적으로 Weak Formulation 형태의 파동방정식에 육면체 요소와 Gauss-Lobatto-Legendre 적분법을 적용한 방법이 널리 사용된다. 일반적인 SEM에서는 PML (Perfectly Matched Layer)경계조건을 적용하기 어려워 속도-응력 변분식으로 파동방정식을 변경하였다. CFS-PML (Complex frequency Shifted PML)경계조건을 ADE (Auxiliary Differential Equation)방정식으로 변경하여 속도-응력 파동방정식에 적용함으로써 분리할 필요가 없는 PML을 적용한 SEM 수치 모형 계산 알고리듬을 구현하였다. 1차원 수치모형과 3차원 수치모형 실험을 통하여 SEM에 적용한 비분리 CFS-PML이 유한경계에서 인공적으로 반사되는 반사파를 효과적으로 제거하는 것을 확인하였다.

Keywords

References

  1. 조창수, 이희일, 2009, 회전된 엇갈린 격자를 이용한 탄성파 모델링에의 CPML 경계조건 적용, 지구물리와 물리탐사, 12, 183-191.
  2. 지헌철, 박정호, 김근영, 제일영, 신동훈, 신진수, 조창수, 이희일, 2010, 북한 핵실험 모니터링: 1, 2차 비교, 지구물리와 물리탐사, 13, 243-248.
  3. Appelo, D., and Petersson, N. A., 2008, A stable finite difference method for the elastic wave equation on complex geometries with free surfaces, Comm. Comput. Phys., 5, 84-107.
  4. Basabe, J. D. D., and Sen, M. K., 2007, Grid dispersion and stability criteria of some common finite-element methods for acoustic and elsatic wav equations, Geophyscis, 72, T81-T95. https://doi.org/10.1190/1.2785046
  5. Brenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200. https://doi.org/10.1006/jcph.1994.1159
  6. Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics, 50, 705-708. https://doi.org/10.1190/1.1441945
  7. Clayton, R., and Enquist, B., 1977, Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations, BSSA, 67, 1529-1540.
  8. Correia, D., and Jin, J.-M., 2005, On the Development of a Higher-Order PML, IEEE Trans. Antennas Propag., 53, 4157-4163. https://doi.org/10.1109/TAP.2005.859901
  9. Diaz, J., Ezziani, A., and Le Goff, N., 2011, Version 2.0 Gar6more3D, http://web.univ-pau.fr/-jdiaz1/gar63DCecill.html.
  10. Ely, G. P., Day, S. M., and Minster, J.-B., 2008, A support-operator method for visco-elastic wave modeling in 3D heterogeneous media, GJI, 172, 331-344.
  11. Festa, G., and Vilotte, J. P., 2005, The newmark scheme as velocity-stress time-staggering: and efficient PML implementation for spectral element simulations of elastodynamics, GJI, 161, 789-812.
  12. Kanamori, H., 1977, The energy release in great earthquakes, J. Geoph. Res., 82, 2981-2987. https://doi.org/10.1029/JB082i020p02981
  13. Komatitsch, D., and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 72, SM155-SM167. https://doi.org/10.1190/1.2757586
  14. Komatitsch, D., and Tromp, J., 1999, Introduction to the spectral-element method for 3-D seismic wave propagation, GJI, 139, 806-822.
  15. Komatitsch, D., and Vilotte, J.-P., 1998, The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures, BSSA, 88, 368-392.
  16. Li, Y. F., and Bou Matar, O., 2010, Convolutional pefectly matched layer for elastic second-order wave equation, J. Acoust. Soc. Am., 127, 1318-1327. https://doi.org/10.1121/1.3290999
  17. Martin, R., Komatitsch, D., and Gedney, S. D., 2008, A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation, Comput. Model. Eng. Sci., 37, 274-304.
  18. Martin, R., Komatitsch, D., Gedney S. D., and Bruthiaux, E., 2010, A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML), Comp. Model. Eng. Sci., 56, 17-42.
  19. Meza-Fajardo, K.-C., and Papageorgiou, A.-S., 2008, A non-convolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis, BSSA, 98, 1811-1836.
  20. Roden, J. A., and Gedney, S. D., 2000, Convolution PML (CPML): An efficcient FDTD implementation of the CFS-PML for arbitrary media, Microwave and Optical Technology Letters, 27, 334-339. https://doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
  21. Rodgers, A. J., and Pettersson, N. A., and Sjogreen, B., 2010, Simulation of topographic effects on seismic waves from shallow explosions near the North Korean nuclear test site with emphasis on shear wave generation, J. Geoph. Res., 115, B11309, doi:10.1029/2010JB007707.