
International Journal of Internet, Broadcasting and Communication Vol.16 No.2 161-168 (2024)

http://dx.doi.org/10.7236/IJIBC.2024.16.2.161

Copyright© 2024 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms

of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Design of a ParamHub for Machine Learning in a Distributed Cloud

Environment

Su-Yeon Kim*, Seok-Jae Moon**

* The master’s course, Graduate School of Smart Convergence, Kwangwoon University, Seoul,

Korea

** Professor, Graduate School of Smart Convergence, KwangWoon University, Seoul, Korea

E-mail : {rlatndus0304, msj8086}@kw.ac.kr

Abstract

As the size of big data models grows, distributed training is emerging as an essential element for large-

scale machine learning tasks. In this paper, we propose ParamHub for distributed data training. During the

training process, this agent utilizes the provided data to adjust various conditions of the model's parameters,

such as the model structure, learning algorithm, hyperparameters, and bias, aiming to minimize the error

between the model's predictions and the actual values. Furthermore, it operates autonomously, collecting and

updating data in a distributed environment, thereby reducing the burden of load balancing that occurs in a

centralized system. And Through communication between agents, resource management and learning

processes can be coordinated, enabling efficient management of distributed data and resources. This approach

enhances the scalability and stability of distributed machine learning systems while providing flexibility to be

applied in various learning environments.

Keywords: Agent System, Parameter, Distributed Training, Efficiency, Machine Learning

1. INTRODUCTION

In recent years, machine learning has been applied to various fields such as business, science, and online

services, with the size of data and training models continuing to increase [1]. Machine learning models

typically have many parameters, and effectively training such models requires vast amounts of data and

computation [2]. Examples include image recognition [3], face recognition [4], and self-driving cars [5].

However, efficient training has become challenging due to the additional time costs incurred by training

models, mainly because of large datasets and complex model architectures [6]. To optimize the performance

of your model or achieve the desired results, you need to adjust parameters such as model structure,

performance tuning, hyperparameters, and biases. Therefore, as dataset size and model complexity continue

to increase, training models in a distributed environment has become essential for large-scale machine learning

tasks [7]. In this paper, we propose ParamHub for distributed data training to minimize and expedite the costs

incurred in learning when models based on large-scale datasets are applied. The proposed system consists of

three layers: DataSet, Worker, and ParamHub. The Worker layer consists of the Task Scheduler module, the

Resource Monitoring module, and multiple nodes, responsible for training. The Task Scheduler module

IJIBC 24-2-19

Manuscript Received: April. 1, 2024 / Revised: April. 13, 2024 / Accepted: April. 20, 2024

Corresponding Author: msj8086@kw.ac.kr

Tel: 02-940-8283, Fax: 02-940-5443

Author’s affiliation: Professor, Graduate School of Smart Convergence, Kwangwoon University, Seoul, Korea

162 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 161-168 (2024)

partitions the data among nodes, while the Resource Monitoring module allocates necessary resources through

monitoring. The ParamHub layer is responsible for updating data such as weight condition and is comprised

of the Server Manager, Controller, and Update Model modules. The Server Manager module receives and

manages trained data information from each node. The Controller module repeatedly trains data information

and sends the information to the Update Model module when parameter values are optimized. The structure of

this paper is as follows: Section 2 describes the system outline and operational flow and describes the overall

flow with a sequence diagram. Section 3 offers a comparative analysis of the performance between the existing

system and the proposed system, while Section 4 concludes with a conclusion.

2. PROPOSED SYSTEM

2.1. System Component

Figure 1. Overview of the proposed system

Figure 1 presents an overview of the system proposed in this paper. The proposed system consists of three

layers: DataSet, Worker, and ParamHub. The DataSet consists of training data. The Worker layer consists of

the Task Scheduler module and the Resource Monitoring module. ParamHub consists of the Server Manager

module, Controller module, and Update Model module. The description of each module is as follows.

• Task Scheduler: This module checks node status and is responsible for transmitting data to each node.

Subsequently, it receives and processes the data to be trained from the DataSet layer.

• Resource Monitoring: The Resource Monitoring module collects trained data from each node, manages

resources through monitoring, and transmits it to the Server Manager module.

• Server Manager: This module aggregates the data from each node into a single result and then transmits

it to the Controller module.

• Controller: The Controller module judges the result and transmits it to the DataSet when additional data

training is needed, and then repeats the process.

Design of a ParamHub for Machine Learning in a Distributed Cloud Environment 163

• Update Model: This module repeats the above process several times, updating the values when parameters

of the entire model have been optimized.

Figure 2 shows the operational flow of data distribution training for ParamHub proposed in this paper. The

data to be trained from the DataSet is sent to the Task Scheduler module. After receiving the data, the Task

Scheduler module divides it into N nodes and transmits it. The number of nodes is determined by considering

factors such as system requirements, workload, data volume, and processing speed. Each node uses the

provided data to adjust and learn model parameters. Afterward, the learned values are transmitted to the

Resource Monitoring module. This module is responsible for collecting training data from each node and

monitoring and managing it. And this information is transmitted to the Server Manager module. Then, it adds

up all the values received from the nodes and sends the result to the Controller module. The Controller module

trains a model by repeatedly using data based on the received results. As the data is trained repeatedly,

predictions can be calculated, and patterns can be identified. The final results are sent to the Update Model

module and are updated.

Figure 2. ParamHub workflow

2.2. Sequence Diagram

This section describes the overall flow of the system proposed in this paper and the data flow between each

module. Figure 3 shows the flow of data and operations of the proposed system.

164 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 161-168 (2024)

Figure 3. Sequence diagram of proposed system

1. sendData(trainingdata[]): The training data is sent from the DataSet to the Task Scheduler module.

2. dataSplitting(trainingdata[]): Split the data to be trained according to the number of N nodes.

3. nodeTraning(): Train the split data at each node.

4. sendNodeInfo(trainingdata[], nodes): Information on the trained data from each node is transmitted to

the Resource Monitoring module.

5. resourceAllocation(): It receives resource allocation and transfers the information to the Server Manager

module.

6. mergeDataInfo(traineddata[]): Add up all the training data values received from the N nodes.

7. SendResult(traineddata): Send the trained data to the controller module. This is used as input data for

model updating.

8. backpropagation(traineddata): Adjust errors in the trained data. This process aims to find optimal model

parameters.

9. return(resultinfo): Return the resulting data and train again. The model's parameters are repeatedly trained

to minimize the error between the model's predictions and actual values.

10. sendData(resultinfo): The results obtained through multiple repeated training are updated in the Update

Model module.

11. updateResultInfo(): The resulting information is sent to the Update Model module.

Algorithm 1 implements the ParmHub process for distributed machine learning, encompassing the adjustment

of models through a central server using distributed data and updating each node's model.

Design of a ParamHub for Machine Learning in a Distributed Cloud Environment 165

Algorithm 1: ParmHub distributed machine learning algorithm

PamHub Procedure start:

 traingdataset[] = DataSet of n:

 tdata[] = Worker::TaskScheduler(traingdataset[])

distributed_data = distribute_data_round_robin(tdata[], num_nodes)

 tres = Worker::ResourceMoitoring(distributed_data):

merge_models = ParmHub::ServerManager(tres):

 ParmHub::Controller(merge_models):

procedure end;

func_Worker::TaskScheduler(traingdataset[], num_nodes): // Distribute the data to each node

in a round-robin fashion.

 nodes_data = [[] for _ in range(num_nodes)]

for i, item in enumerate(traingdataset[]):

 node_index = i % num_nodes

 nodes_data[node_index].append(item)

return nodes_data

func_Worker::ResourceMoitoring(distributed_data[]):

X = np.array([x for x, _ in data]).reshape(-1, 1)

y = np.array([y for _, y in data])

model = LinearRegression()

model.fit(X, y) return nodes_data

distributed_data[] = train_linear_regression_model(node_data)

return distributed_data

func_ParmHub::ServerManager(tres):

coefs = [coef for coef, _ in models]

 intercepts = [intercept for _, intercept in models]

mean_coef = sum(coefs) / len(coefs)

 mean_intercept = sum(intercepts) / len(intercepts)

 return merged_coef, merged_intercept

func_ParmHub::Controller(tres):

 def update_weights_central_server(node_weights): // Update the weights of the nodes by

averaging them on the central server.

 total_weight = sum(weight for weight, bias in node_weights)

 total_bias = sum(bias for weight, bias in node_weights)

 num_nodes = len(node_weights)

 updated_weight = total_weight / num_nodes

 updated_bias = total_bias / num_nodes

 return updated_weight, updated_bias

166 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 161-168 (2024)

func_ParmHub::UpdateModel(merge_models): // Propagate the updated weights and biases to

all nodes. Each node applies these values to its own model.

def propagate_updated_weights_to_nodes(updated_weight, updated_bias, num_nodes):

 updated_node_weights = [(updated_weight, updated_bias) for _ in range(num_nodes)]

return updated_node_weights

3. COMPERATIVE ANALYSIS

Table 2 summarizes the comparison results of major architectures used in distributed machine learning.

The comparison targets are Ring-AllReduce [8] and data parallelism [9]. In this paper, we compared the

communication method, consistency, and scalability of each architecture.

Table 2. Comparison of systems

 Ring-AllReduce[8] Data Parallelism[9] Proposed System

Communication

Efficient communication
is achieved through the
utilization of the Ring

structure employing the
AllReduce algorithm.

Data is processed in
parallel, and direct
communication is

established between
each device for updates.

Each agent
communicates with

the parameter
server to perform

updates.

Consistency
Consistency is

maintained across all
nodes with identical data

Due to multiple

processing units
concurrently handling

the same data,
consistency issues may

arise.

The lack of
guaranteed arrival
order at the server

can lead to
consistency issues.

Scalability

It is suitable for scaling
up and operates

efficiently even as the
number of nodes

increases.

There are limitations
regarding the amount of

data and model size.

It is scalable by
adjusting the

number of agents.

First, in the communication method, Ring-AllReduce uses the All-Reduce algorithm to effectively

communicate through a ring structure. Data Parallelism processes data in parallel and communicates directly

between each device to synchronize updates. In the proposed system, the agent performs updates by

communicating with a centralized parameter server. In terms of consistency, Ring-AllReduce communicates

directly with neighboring nodes, ensuring that the same data is maintained across all nodes. Data Parallelism

entails each processing unit performing tasks independently, thus potentially causing consistency issues with

changes to the same data. The proposed system is asynchronous, and the order of arrival at the server is not

guaranteed, which may lead to consistency problems. In terms of scalability, Ring-AllReduce is suitable for

scaling up and operates efficiently even as the number of nodes increases. On the other hand, Data Parallelism

has limitations in terms of the amount of data and the size of the model. The proposed system is scalable by

adjusting the number of agents.

Design of a ParamHub for Machine Learning in a Distributed Cloud Environment 167

(A) Training time (B) Accuracy

Figure 4. Comparing speed and accuracy

Figure 4 is a chart comparing training times by data size using the 60,000 Fashion MNIST dataset. (A)

measures the learning speed according to each data size, and it can be observed that the speed of the proposed

system is somewhat low at 85 seconds. The time taken to update parameters increases mainly due to

communication overhead and communication with a centralized server. This results in network communication

and data transfer taking time, leading to more overhead, especially as data size increases. (B) is a chart

measuring accuracy. You can see that the accuracy of the proposed system is 0.92 when there are 60,000 pieces

of data, which is higher than that of other systems. Because the same parameters are shared and updated, the

model remains consistent, which helps achieve higher accuracy during the training process. Therefore, the

ParamHub proposed in this paper may have somewhat lower speed but can provide higher accuracy compared

to other systems such as data parallelism or ring-allreduce.

4. CONCLISION

In this paper, we proposed ParamHub for distributed data training to minimize and accelerate the cost added

to learning in situations where large-scale dataset-based models are applied. The proposed system can operate

independently in a distributed environment, with each agent designed to perform tasks independently,

aggregating data and updating the model when necessary. This reduces bottlenecks that occur in centralized

control systems and enables efficient resource management in a distributed environment. In addition, each

agent can manage and update necessary data in its own environment and efficiently operate complex data and

model learning. However, because each agent learns and acts independently, the complexity and consistency

of the learning process must be considered. Therefore, future research is needed to improve the agent's learning

process.

ACKNOWLEDGMENT

※ This paper was supported by the KwangWoon University Research Grant of 2024.

REFERENCES

[1] Y. Chen, Y. Peng, Y. Bao, C. Wu, Y. Zhu, and C. Guo, “Elastic parameter server load distribution in deep

learning clusters,” Proceedings of the 11th ACM Symposium on Cloud Computing. ACM, Oct. 12, 2020.

DOI: https://doi.org/10.1145/3419111.3421307

https://doi.org/10.1145/3419111.3421307

168 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 161-168 (2024)

[2] N. Provatas, I. Konstantinou, and N. Koziris, “Is Systematic Data Sharding able to Stabilize Asynchronous

Parameter Server Training?,” 2021 IEEE International Conference on Big Data (Big Data). IEEE, Dec. 15, 2021.

DOI: https://doi.org/10.1109/bigdata52589.2021.9672001.

[3] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.” arXiv,

2020.

DOI: https://doi.org/10.48550/ARXIV.2010.11929.

[4] M. Wang and W. Deng, “Deep face recognition: A survey,” Neurocomputing, vol. 429. Elsevier BV, pp. 215–244,

Mar. 2021.

DOI: https://doi.org/10.1016/j.neucom.2020.10.081.

[5] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning techniques for autonomous

driving,” Journal of Field Robotics, vol. 37, no. 3. Wiley, pp. 362–386, Nov. 14, 2019.

DOI: https://doi.org/10.1002/rob.21918.

[6] M. Wang, W. Fu, X. He, S. Hao, and X. Wu, “A Survey on Large-Scale Machine Learning,” IEEE Transactions on

Knowledge and Data Engineering. Institute of Electrical and Electronics Engineers (IEEE), pp. 1–1, 2020.

DOI: https://doi.org/10.1109/tkde.2020.3015777.

[7] A. Renz-Wieland, R. Gemulla, S. Zeuch, and V. Markl, “Dynamic Parameter Allocation in Parameter Servers,”

arXiv, 2020.DOI: https://doi.org/10.48550/ARXIV.2002.00655.

[8] Y. Chao, M. Liao, and J. Gao, “Task allocation for decentralized training in heterogeneous environment.” arXiv,

2021.

DOI: https://doi.org/10.48550/ARXIV.2111.08272.

[9] Y. M. Park, S. Y. Ahn, E. J. Lim, Y. S. Choi, Y. C. Woo, and W. Choi, “Deep Learning Model Parallelism,”

Electronics and Telecommunications Trends, vol. 33, no. 4, pp. 1–13, Aug. 2018.

DOI: https://doi.org/10.22648/ETRI.2018.J.330401

https://doi.org/10.1109/bigdata52589.2021.9672001
https://doi.org/10.48550/ARXIV.2010.11929
https://doi.org/10.1016/j.neucom.2020.10.081
https://doi.org/10.1002/rob.21918
https://doi.org/10.1109/tkde.2020.3015777
https://doi.org/10.48550/ARXIV.2002.00655
https://doi.org/10.48550/ARXIV.2111.08272
https://doi.org/10.22648/ETRI.2018.J.330401

