
International Journal of Internet, Broadcasting and Communication Vol.16 No.2 161-168 (2024)  

http://dx.doi.org/10.7236/IJIBC.2024.16.2.161  

 

Copyright©  2024 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms 

of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) 

 
 

Design of a ParamHub for Machine Learning in a Distributed Cloud 

Environment 

 
 

Su-Yeon Kim*, Seok-Jae Moon** 

 

* The master’s course, Graduate School of Smart Convergence, Kwangwoon University, Seoul, 

Korea 

** Professor, Graduate School of Smart Convergence, KwangWoon University, Seoul, Korea 

E-mail : {rlatndus0304, msj8086}@kw.ac.kr 

 

Abstract  

As the size of big data models grows, distributed training is emerging as an essential element for large-

scale machine learning tasks. In this paper, we propose ParamHub for distributed data training. During the 

training process, this agent utilizes the provided data to adjust various conditions of the model's parameters, 

such as the model structure, learning algorithm, hyperparameters, and bias, aiming to minimize the error 

between the model's predictions and the actual values. Furthermore, it operates autonomously, collecting and 

updating data in a distributed environment, thereby reducing the burden of load balancing that occurs in a 

centralized system. And Through communication between agents, resource management and learning 

processes can be coordinated, enabling efficient management of distributed data and resources. This approach 

enhances the scalability and stability of distributed machine learning systems while providing flexibility to be 

applied in various learning environments. 
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1. INTRODUCTION 

In recent years, machine learning has been applied to various fields such as business, science, and online 

services, with the size of data and training models continuing to increase [1]. Machine learning models 

typically have many parameters, and effectively training such models requires vast amounts of data and 

computation [2]. Examples include image recognition [3], face recognition [4], and self-driving cars [5]. 

However, efficient training has become challenging due to the additional time costs incurred by training 

models, mainly because of large datasets and complex model architectures [6]. To optimize the performance 

of your model or achieve the desired results, you need to adjust parameters such as model structure, 

performance tuning, hyperparameters, and biases. Therefore, as dataset size and model complexity continue 

to increase, training models in a distributed environment has become essential for large-scale machine learning 

tasks [7]. In this paper, we propose ParamHub for distributed data training to minimize and expedite the costs 

incurred in learning when models based on large-scale datasets are applied. The proposed system consists of 

three layers: DataSet, Worker, and ParamHub. The Worker layer consists of the Task Scheduler module, the 

Resource Monitoring module, and multiple nodes, responsible for training. The Task Scheduler module 
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partitions the data among nodes, while the Resource Monitoring module allocates necessary resources through 

monitoring. The ParamHub layer is responsible for updating data such as weight condition and is comprised 

of the Server Manager, Controller, and Update Model modules. The Server Manager module receives and 

manages trained data information from each node. The Controller module repeatedly trains data information 

and sends the information to the Update Model module when parameter values are optimized. The structure of 

this paper is as follows: Section 2 describes the system outline and operational flow and describes the overall 

flow with a sequence diagram. Section 3 offers a comparative analysis of the performance between the existing 

system and the proposed system, while Section 4 concludes with a conclusion. 

 

2. PROPOSED SYSTEM 

2.1. System Component 

 

 
 

Figure 1. Overview of the proposed system 
 

Figure 1 presents an overview of the system proposed in this paper. The proposed system consists of three 

layers: DataSet, Worker, and ParamHub. The DataSet consists of training data. The Worker layer consists of 

the Task Scheduler module and the Resource Monitoring module. ParamHub consists of the Server Manager 

module, Controller module, and Update Model module. The description of each module is as follows. 

• Task Scheduler: This module checks node status and is responsible for transmitting data to each node. 

Subsequently, it receives and processes the data to be trained from the DataSet layer. 

• Resource Monitoring: The Resource Monitoring module collects trained data from each node, manages 

resources through monitoring, and transmits it to the Server Manager module. 

• Server Manager: This module aggregates the data from each node into a single result and then transmits 

it to the Controller module. 

• Controller: The Controller module judges the result and transmits it to the DataSet when additional data 

training is needed, and then repeats the process. 
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• Update Model: This module repeats the above process several times, updating the values when parameters 

of the entire model have been optimized. 

Figure 2 shows the operational flow of data distribution training for ParamHub proposed in this paper. The 

data to be trained from the DataSet is sent to the Task Scheduler module. After receiving the data, the Task 

Scheduler module divides it into N nodes and transmits it. The number of nodes is determined by considering 

factors such as system requirements, workload, data volume, and processing speed. Each node uses the 

provided data to adjust and learn model parameters. Afterward, the learned values are transmitted to the 

Resource Monitoring module. This module is responsible for collecting training data from each node and 

monitoring and managing it. And this information is transmitted to the Server Manager module. Then, it adds 

up all the values received from the nodes and sends the result to the Controller module. The Controller module 

trains a model by repeatedly using data based on the received results. As the data is trained repeatedly, 

predictions can be calculated, and patterns can be identified. The final results are sent to the Update Model 

module and are updated. 

 

 
 

Figure 2. ParamHub workflow 
 

2.2. Sequence Diagram 

 

This section describes the overall flow of the system proposed in this paper and the data flow between each 

module. Figure 3 shows the flow of data and operations of the proposed system. 
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Figure 3. Sequence diagram of proposed system 
 

1. sendData(trainingdata[]): The training data is sent from the DataSet to the Task Scheduler module. 

2. dataSplitting(trainingdata[]): Split the data to be trained according to the number of N nodes. 

3. nodeTraning(): Train the split data at each node. 

4. sendNodeInfo(trainingdata[], nodes): Information on the trained data from each node is transmitted to 

the Resource Monitoring module. 

5. resourceAllocation(): It receives resource allocation and transfers the information to the Server Manager 

module. 

6. mergeDataInfo(traineddata[]): Add up all the training data values received from the N nodes. 

7. SendResult(traineddata): Send the trained data to the controller module. This is used as input data for 

model updating. 

8. backpropagation(traineddata): Adjust errors in the trained data. This process aims to find optimal model 

parameters. 

9. return(resultinfo): Return the resulting data and train again. The model's parameters are repeatedly trained 

to minimize the error between the model's predictions and actual values. 

10. sendData(resultinfo): The results obtained through multiple repeated training are updated in the Update 

Model module. 

11. updateResultInfo(): The resulting information is sent to the Update Model module. 

 

Algorithm 1 implements the ParmHub process for distributed machine learning, encompassing the adjustment 

of models through a central server using distributed data and updating each node's model. 
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Algorithm 1: ParmHub distributed machine learning algorithm 

PamHub Procedure start:   

 traingdataset[] = DataSet of n:  

 

     tdata[] = Worker::TaskScheduler(traingdataset[]) 

distributed_data = distribute_data_round_robin(tdata[], num_nodes) 

     tres = Worker::ResourceMoitoring(distributed_data): 

 

merge_models = ParmHub::ServerManager(tres): 

     ParmHub::Controller(merge_models): 

 

procedure end; 

 

func_Worker::TaskScheduler(traingdataset[], num_nodes): // Distribute the data to each node 

in a round-robin fashion. 

 

 nodes_data = [[] for _ in range(num_nodes)]     

for i, item in enumerate(traingdataset[]): 

        node_index = i % num_nodes 

        nodes_data[node_index].append(item) 

 

return nodes_data 

 

func_Worker::ResourceMoitoring(distributed_data[]): 

X = np.array([x for x, _ in data]).reshape(-1, 1)  

y = np.array([y for _, y in data])  

 

model = LinearRegression() 

model.fit(X, y) return nodes_data 

distributed_data[] = train_linear_regression_model(node_data) 

 

return distributed_data 

 

func_ParmHub::ServerManager(tres):     

coefs = [coef for coef, _ in models] 

    intercepts = [intercept for _, intercept in models] 

     

mean_coef = sum(coefs) / len(coefs) 

    mean_intercept = sum(intercepts) / len(intercepts) 

     

    return merged_coef, merged_intercept 

 

func_ParmHub::Controller(tres): 

   def update_weights_central_server(node_weights):   // Update the weights of the nodes by 

averaging them on the central server. 

      total_weight = sum(weight for weight, bias in node_weights) 

      total_bias = sum(bias for weight, bias in node_weights) 

      num_nodes = len(node_weights) 

     

    updated_weight = total_weight / num_nodes 

      updated_bias = total_bias / num_nodes 

     

   return updated_weight, updated_bias 
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func_ParmHub::UpdateModel(merge_models):  // Propagate the updated weights and biases to 

all nodes. Each node applies these values to its own model. 

 

def propagate_updated_weights_to_nodes(updated_weight, updated_bias, num_nodes): 

 updated_node_weights = [(updated_weight, updated_bias) for _ in range(num_nodes)] 

return updated_node_weights 

 

3. COMPERATIVE ANALYSIS 

Table 2 summarizes the comparison results of major architectures used in distributed machine learning. 

The comparison targets are Ring-AllReduce [8] and data parallelism [9]. In this paper, we compared the 

communication method, consistency, and scalability of each architecture. 

 

Table 2. Comparison of systems 

 Ring-AllReduce[8] Data Parallelism[9] Proposed System 

Communication 

Efficient communication 
is achieved through the 
utilization of the Ring 

structure employing the 
AllReduce algorithm. 

Data is processed in 
parallel, and direct 
communication is 

established between 
each device for updates. 

Each agent 
communicates with 

the parameter 
server to perform 

updates. 

Consistency 
Consistency is 

maintained across all 
nodes with identical data 

 
Due to multiple 

processing units 
concurrently handling 

the same data, 
consistency issues may 

arise. 

The lack of 
guaranteed arrival 
order at the server 

can lead to 
consistency issues. 

Scalability 

It is suitable for scaling 
up and operates 

efficiently even as the 
number of nodes 

increases. 

There are limitations 
regarding the amount of 

data and model size. 

It is scalable by 
adjusting the 

number of agents. 

 

First, in the communication method, Ring-AllReduce uses the All-Reduce algorithm to effectively 

communicate through a ring structure. Data Parallelism processes data in parallel and communicates directly 

between each device to synchronize updates. In the proposed system, the agent performs updates by 

communicating with a centralized parameter server. In terms of consistency, Ring-AllReduce communicates 

directly with neighboring nodes, ensuring that the same data is maintained across all nodes. Data Parallelism 

entails each processing unit performing tasks independently, thus potentially causing consistency issues with 

changes to the same data. The proposed system is asynchronous, and the order of arrival at the server is not 

guaranteed, which may lead to consistency problems. In terms of scalability, Ring-AllReduce is suitable for 

scaling up and operates efficiently even as the number of nodes increases. On the other hand, Data Parallelism 

has limitations in terms of the amount of data and the size of the model. The proposed system is scalable by 

adjusting the number of agents. 
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(A) Training time    (B) Accuracy 

 

Figure 4. Comparing speed and accuracy 
 

Figure 4 is a chart comparing training times by data size using the 60,000 Fashion MNIST dataset. (A) 

measures the learning speed according to each data size, and it can be observed that the speed of the proposed 

system is somewhat low at 85 seconds. The time taken to update parameters increases mainly due to 

communication overhead and communication with a centralized server. This results in network communication 

and data transfer taking time, leading to more overhead, especially as data size increases. (B) is a chart 

measuring accuracy. You can see that the accuracy of the proposed system is 0.92 when there are 60,000 pieces 

of data, which is higher than that of other systems. Because the same parameters are shared and updated, the 

model remains consistent, which helps achieve higher accuracy during the training process. Therefore, the 

ParamHub proposed in this paper may have somewhat lower speed but can provide higher accuracy compared 

to other systems such as data parallelism or ring-allreduce. 

 

4. CONCLISION 

In this paper, we proposed ParamHub for distributed data training to minimize and accelerate the cost added 

to learning in situations where large-scale dataset-based models are applied. The proposed system can operate 

independently in a distributed environment, with each agent designed to perform tasks independently, 

aggregating data and updating the model when necessary. This reduces bottlenecks that occur in centralized 

control systems and enables efficient resource management in a distributed environment. In addition, each 

agent can manage and update necessary data in its own environment and efficiently operate complex data and 

model learning. However, because each agent learns and acts independently, the complexity and consistency 

of the learning process must be considered. Therefore, future research is needed to improve the agent's learning 

process. 
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