• Title/Summary/Keyword: finite operators

Search Result 125, Processing Time 0.022 seconds

SAMPLING THEOREMS ASSOCIATED WITH DIFFERENTIAL OPERATORS WITH FINITE RANK PERTURBATIONS

  • Annaby, Mahmoud H.;El-Haddad, Omar H.;Hassan, Hassan A.
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.969-990
    • /
    • 2016
  • We derive a sampling theorem associated with first order self-adjoint eigenvalue problem with a finite rank perturbation. The class of the sampled integral transforms is of finite Fourier type where the kernel has an additional perturbation.

Unstructured Tetrahedral Meshing by an Edge-Based Advancing Front Method

  • Kim, Young-Woong;Kwon, Gi-Whan;Chae, Soo-Won;Shim, Jae-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.211-218
    • /
    • 2002
  • This paper proposes an unstructured tetrahedral meshing algorithm for CAD models in the IGES format. The work presented is based on the advancing front method, which was proposed by the third author. Originally, the advancing front method uses three basic operators, namely, trimming, wedging, and digging. In this research, in addition to the basic operators, three new operators splitting, local finishing, and octahedral-are added to stabilize the meshing process. In addition, improved check processes are applied to obtain better-shaped elements. The algorithm is demonstrated and evaluated by four examples.

OUTER APPROXIMATION METHOD FOR ZEROS OF SUM OF MONOTONE OPERATORS AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Abass, Hammad Anuoluwapo;Mebawondu, Akindele Adebayo;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.451-474
    • /
    • 2021
  • In this paper, we investigate a hybrid algorithm for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators which is also a common fixed point problem for finite family of relatively quasi-nonexpansive mappings and split feasibility problem in uniformly convex real Banach spaces which are also uniformly smooth. The iterative algorithm employed in this paper is design in such a way that it does not require prior knowledge of operator norm. We prove a strong convergence result for approximating the solutions of the aforementioned problems and give applications of our main result to minimization problem and convexly constrained linear inverse problem.

INDEX AND STABLE RANK OF C*-ALGEBRAS

  • Kim, Sang Og
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.71-77
    • /
    • 1999
  • We show that if the stable rank of $B^{\alpha}$ is one, then the stable rank of B is less than or equal to the order of G for any action of a finite group G. Also we give a short proof to the known fact that if the action of a finite group on a $C^*$-algebra B is saturated then the canonical conditional expectation from B to $B^{\alpha}$ is of index-finite type and the crossed product $C^*$-algebra is isomorphic to the algebra of compact operators on the Hilbert $B^{\alpha}$-module B.

  • PDF

TOEPLITZ OPERATORS ON GENERALIZED FOCK SPACES

  • Cho, Hong Rae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.711-722
    • /
    • 2016
  • We study Toeplitz operators $T_{\nu}$ on generalized Fock spaces $F^2_{\phi}$ with a locally finite positive Borel measures ${\nu}$ as symbols. We characterize operator-theoretic properties (boundedness and compactness) of $T_{\nu}$ in terms of the Fock-Carleson measure and the Berezin transform ${\tilde{\nu}}$.

THE GENERALIZED INVERSES A(1,2)T,S OF THE ADJOINTABLE OPERATORS ON THE HILBERT C^*-MODULES

  • Xu, Qingxiang;Zhang, Xiaobo
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.363-372
    • /
    • 2010
  • In this paper, we introduce and study the generalized inverse $A^{(1,2)}_{T,S}$ with the prescribed range T and null space S of an adjointable operator A from one Hilbert $C^*$-module to another, and get some analogous results known for finite matrices over the complex field or associated rings, and the Hilbert space operators.

ON UDL DECOMPOSITIONS IN SEMIGROUPS

  • Lim, Yong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.633-651
    • /
    • 1997
  • For a non-degenerate symmetric bilinear form $\sigma$ on a finite dimensional vector space E, the Jordan algebra of $\sigma$-symmetric operators has a symmetric cone $\Omega_\sigma$ of positive definite operators with respect to $\sigma$. The cone $C_\sigma$ of elements (x,y) \in E \times E with \sigma(x,y) \geq 0$ gives the compression semigroup. In this work, we show that in the sutomorphism group of the tube domain over $\Omega_\sigma$, this semigroup has a UDL and Ol'shanskii decompositions and is exactly the compression semigroup of $\Omega_sigma$.

  • PDF

SPECTRAL ANALYSIS FOR THE CLASS OF INTEGRAL OPERATORS ARISING FROM WELL-POSED BOUNDARY VALUE PROBLEMS OF FINITE BEAM DEFLECTION ON ELASTIC FOUNDATION: CHARACTERISTIC EQUATION

  • Choi, Sung Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.71-111
    • /
    • 2021
  • We consider the boundary value problem for the deflection of a finite beam on an elastic foundation subject to vertical loading. We construct a one-to-one correspondence �� from the set of equivalent well-posed two-point boundary conditions to gl(4, ℂ). Using ��, we derive eigenconditions for the integral operator ��M for each well-posed two-point boundary condition represented by M ∈ gl(4, 8, ℂ). Special features of our eigenconditions include; (1) they isolate the effect of the boundary condition M on Spec ��M, (2) they connect Spec ��M to Spec ����,α,k whose structure has been well understood. Using our eigenconditions, we show that, for each nonzero real λ ∉ Spec ����,α,k, there exists a real well-posed boundary condition M such that λ ∈ Spec ��M. This in particular shows that the integral operators ��M, arising from well-posed boundary conditions, may not be positive nor contractive in general, as opposed to ����,α,k.

UNIQUENESS RELATED TO HIGHER ORDER DIFFERENCE OPERATORS OF ENTIRE FUNCTIONS

  • Xinmei Liu;Junfan Chen
    • The Pure and Applied Mathematics
    • /
    • v.30 no.1
    • /
    • pp.43-65
    • /
    • 2023
  • In this paper, by using the difference analogue of Nevanlinna's theory, the authors study the shared-value problem concerning two higher order difference operators of a transcendental entire function with finite order. The following conclusion is proved: Let f(z) be a finite order transcendental entire function such that λ(f - a(z)) < ρ(f), where a(z)(∈ S(f)) is an entire function and satisfies ρ(a(z)) < 1, and let 𝜂(∈ ℂ) be a constant such that ∆𝜂n+1 f(z) ≢ 0. If ∆𝜂n+1 f(z) and ∆𝜂n f(z) share ∆𝜂n a(z) CM, where ∆𝜂n a(z) ∈ S ∆𝜂n+1 f(z), then f(z) has a specific expression f(z) = a(z) + BeAz, where A and B are two non-zero constants and a(z) reduces to a constant.

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.