References
- D. S. Djordjevic and P. S. Stanimirovic, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J. 51(126) (2001), no. 3, 617–634. https://doi.org/10.1023/A:1013792207970
- D. S. Djordjevi´c and Y. Wei, Outer generalized inverses in rings, Comm. Algebra 33 (2005), no. 9, 3051–3060. https://doi.org/10.1081/AGB-200066112
- J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), no. 3, 367–381. https://doi.org/10.1017/S0017089500031803
- E. C. Lance, Hilbert C*-modules, A toolkit for operator algebraists. London Mathematical Society Lecture Note Series, 210. Cambridge University Press, Cambridge, 1995.
-
G. K. Pedersen,
$C{\ast}$ -algebras and their automorphism groups, London Mathematical Society Monographs, 14. Academic Press, Inc., London-New York, 1979. - G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: theory and computations, Science Press, Beijing-New York, 2004.
-
Y. Wei, A characterization and representation of the generalized inverse
$A^{(2)}_{T,S}$ and its applications, Linear Algebra Appl. 280 (1998), no. 2-3, 87–96. https://doi.org/10.1016/S0024-3795(98)00008-1 -
Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert
$C{\ast}$ -modules, Linear Algebra Appl. 428 (2008), no. 4, 992–1000. https://doi.org/10.1016/j.laa.2007.08.035 -
Y. Yu and G. Wang, The generalized inverse
$A^{(2)}_{T,S}$ of a matrix over an associative ring, J. Aust. Math. Soc. 83 (2007), no. 3, 423–437. https://doi.org/10.1017/S1446788700038015 -
B. Zheng and C. Zhong, Existence and expressions for the generalized inverse
$A^{(2)}_{T,S}$ of linear operators on Hilbert spaces, Acta Math. Sci. Ser. A Chin. Ed. 27 (2007), no. 2, 288–295.
Cited by
- Volume Removed - Publisher's Disclaimer vol.13, 2011, https://doi.org/10.1016/S1876-6102(14)00454-8
- The Drazin inverse in an arbitrary semiring vol.59, pp.9, 2011, https://doi.org/10.1080/03081087.2010.551660