DOI QR코드

DOI QR Code

THE GENERALIZED INVERSES A(1,2)T,S OF THE ADJOINTABLE OPERATORS ON THE HILBERT C^*-MODULES

  • Xu, Qingxiang (Department of Mathematics, Shanghai Normal University) ;
  • Zhang, Xiaobo (Department of Mathematics, Shanghai Normal University)
  • Published : 2010.03.01

Abstract

In this paper, we introduce and study the generalized inverse $A^{(1,2)}_{T,S}$ with the prescribed range T and null space S of an adjointable operator A from one Hilbert $C^*$-module to another, and get some analogous results known for finite matrices over the complex field or associated rings, and the Hilbert space operators.

Keywords

References

  1. D. S. Djordjevic and P. S. Stanimirovic, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J. 51(126) (2001), no. 3, 617–634. https://doi.org/10.1023/A:1013792207970
  2. D. S. Djordjevi´c and Y. Wei, Outer generalized inverses in rings, Comm. Algebra 33 (2005), no. 9, 3051–3060. https://doi.org/10.1081/AGB-200066112
  3. J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), no. 3, 367–381. https://doi.org/10.1017/S0017089500031803
  4. E. C. Lance, Hilbert C*-modules, A toolkit for operator algebraists. London Mathematical Society Lecture Note Series, 210. Cambridge University Press, Cambridge, 1995.
  5. G. K. Pedersen, $C{\ast}$-algebras and their automorphism groups, London Mathematical Society Monographs, 14. Academic Press, Inc., London-New York, 1979.
  6. G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: theory and computations, Science Press, Beijing-New York, 2004.
  7. Y. Wei, A characterization and representation of the generalized inverse $A^{(2)}_{T,S}$ and its applications, Linear Algebra Appl. 280 (1998), no. 2-3, 87–96. https://doi.org/10.1016/S0024-3795(98)00008-1
  8. Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert $C{\ast}$-modules, Linear Algebra Appl. 428 (2008), no. 4, 992–1000. https://doi.org/10.1016/j.laa.2007.08.035
  9. Y. Yu and G. Wang, The generalized inverse $A^{(2)}_{T,S}$ of a matrix over an associative ring, J. Aust. Math. Soc. 83 (2007), no. 3, 423–437. https://doi.org/10.1017/S1446788700038015
  10. B. Zheng and C. Zhong, Existence and expressions for the generalized inverse $A^{(2)}_{T,S}$ of linear operators on Hilbert spaces, Acta Math. Sci. Ser. A Chin. Ed. 27 (2007), no. 2, 288–295.

Cited by

  1. Volume Removed - Publisher's Disclaimer vol.13, 2011, https://doi.org/10.1016/S1876-6102(14)00454-8
  2. The Drazin inverse in an arbitrary semiring vol.59, pp.9, 2011, https://doi.org/10.1080/03081087.2010.551660