References
-
M. Christ, On the
$\bar{\partial}$ equation in weighted$L^{2}$ norms in C, J. Geom. Anal. 1 (1991), no. 3, 193-230. https://doi.org/10.1007/BF02921303 -
O. Constantin and J. Ortega-Cerda, Some spectral properties of the canonical solution operator to
$\bar{\partial}$ on weighted Fock spaces, J. Math. Anal. Appl. 377 (2011), no. 1, 353-361. https://doi.org/10.1016/j.jmaa.2010.10.074 - O. Constantin and J. A. Pelaez, Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces, Available at arXiv:1304.7501v2.
- J. Isralowitz and K. Zhu, Toeplitz operators on the Fock space, Integral Equations Operator Theory 66 (2010), no. 4, 593-611. https://doi.org/10.1007/s00020-010-1768-9
- N. Marco, X. Massaneda, and J. Ortega-Cerda, Interpolating and sampling sequences for entire functions, Geom. Funct. Anal. 13 (2003), no. 4, 862-914. https://doi.org/10.1007/s00039-003-0434-7
- J. Marzo and J. Ortega-Cerda, Pointwise estimates for the Bergman kernel of the weighted Fock space, J. Geom. Anal. 19 (2009), no. 4, 890-910. https://doi.org/10.1007/s12220-009-9083-x
- V. L. Oleinik, Imbedding theorems for weighted classes of harmonic and analytic functions, J. Soviet. Math. 9 (1978), 228-243. https://doi.org/10.1007/BF01578546
- A. P. Schuster and D. Varolin, Toeplitz operators and Carleson measures on generalized Bargmann-Fock spaces, Integr. Equ. Oper. Theory 72 (2012), no. 3, 363-392. https://doi.org/10.1007/s00020-011-1939-3
- K. Seip and E. H. Youssfi, Hankel operators on Fock spaces and related Bergman kernel estimates, J. Geom. Anal. 23 (2013), no. 1, 170-201. https://doi.org/10.1007/s12220-011-9241-9
- K. Zhu, Analysis on Fock Spaces, Springer GTM 263, New York, 2012.
Cited by
- A Class of Reverse Carleson Measures on Doubling Fock Spaces pp.1661-8262, 2018, https://doi.org/10.1007/s11785-018-0858-6